首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Theoretical and spectroscopic studies of 3,3'-benzylidenedi-4-hydroxycoumarin (bhc) have been performed. B3LYP/6-31G* calculations reproduced the experimental molecular structure of bhc and showed two O-H...O asymmetrical intramolecular hydrogen bonds with O...O distances 2.638 and 2.696 A. The calculated Fukui functions and Molecular Electrostatic Potential for bhc and its deprotonated form, bhc(2-), predicted that the most probable reactive sites for electrophilic attack and hydrogen bonds are the carbonyl oxygens, followed by the hydroxyl oxygens. The coordination ability of 3,3'-benzylidenedi-4-hydroxycoumarin has been proved in a complexation reaction with neodymium (III) ion. The new neodymium (III) complex of bhc was studied by elemental analyses, conductivity and other physical properties, mass spectra, (1)H, (13)C NMR, UV-Vis and IR spectroscopy. The data obtained are in agreement with the metal:ligand ratio of 1:1, and the formula Nd(bhc(2-))(OH)(H(2)O), where bhc(2-)=C(25)H(14)O(6)(2-). The vibrational analysis of the neodymium (III) complex, free bhc, and its monomeric building block, 4-hydroxycoumarin, showed that in the Nd(III) complex the ligand coordinates to the metal ion through both deprotonated hydroxyl groups. The participation of both carbonyl groups in coordination to the metal ion was confirmed by the significant shift of nu(C=O) to lower wavenumber. The evaluation of the cytotoxic activity of the new Nd(III) complex on SKW-3 and HL-60/Dox cells revealed, that it is a potent cytotoxic agent and should be subset further to more detailed pharmacological and toxicological study.  相似文献   

2.
The [{ReCl4(PPh3)}(μ-O){Re(O)(3,5-Me2pzH)4}] complex has been isolated as a product of the degradation of [ReCl3(3,5-Me2pzH)2(PPh3)] during slow crystallization from chloroform in air. Its crystal and molecular structure has been determined as well as spectroscopic investigations and density functional theory (DFT) calculations have been carried out. The UV-Vis spectrum of the dirhenium complex has been discussed on the basis of the spin-allowed electronic transitions calculated for [{ReCl4(PPh3)}(μ-O){Re(O)(3,5-Me2pzH)4}] with the time-dependent DFT (TDDFT) method.  相似文献   

3.
The reaction of VCl(3) with 1,10-phenanthroline and a series of dipeptides (H(2)dip), having aliphatic as well as aromatic side chains, in methyl alcohol and in the presence of triethylamine affords vanadium(III) compounds of the general formula [V(III)(dip)(MeOH)(phen)]Cl. Aerial oxidation/hydrolysis of the vanadium(III) species gives their oxovanadium(IV) analogues of the general formula [V(IV)O(dip)(phen)]. X-ray crystallographic characterization of the [V(IV)O(dip)(phen)] compounds (where dip(2-)=Gly- L-Ala, Gly- L-Val and Gly- L-Phe) revealed that the vanadium atom possesses a severely distorted octahedral coordination and is ligated to a tridentate dip(2-) ligand at the N(amine) atom, the deprotonated N(peptide) atom and one of the O(carboxylate) atoms, as well as an oxo group and two phenanthroline nitrogen atoms. Circular dichroism characterization of the V(III)/V(IV)O(2+)-dipeptide compounds revealed a strong signal for the V(IV)O(2+) species in the visible range of the spectrum, with a characteristic pattern which may be exploited to identify the N(am), N(pep) and O(car) ligation of a peptide or a protein to V(IV)O(2+) center, and a weak Cotton effect of opposite sign to their vanadium(III) analogues. The visible spectra of the V(III)-dipeptide compounds revealed two d-d bands with high intensity, thus indicating that the covalency of the metal-donor atoms is significant, i.e. the vanadium d orbitals are significantly mixed with the ligand orbitals, and this is confirmed by the low values of their Racah B parameters. The high-intensity band of the V(IV)O(2+)-dipeptide compounds at approximately 460 nm implies also a strong covalency of the metal with the equatorial donor atoms and this was supported by the EPR spectra of these compounds. Moreover, the V(III)/V(IV)O(2+)-dipeptide complexes were characterized by EPR and IR spectroscopies as well as conductivity and magnetic susceptibility measurements.  相似文献   

4.
The increasing interest in vanadium coordination chemistry is based on its well-established chemical and biological functions. A beta-diketonato complex of oxovanadium(IV) is known to be having numerous catalytic applications and also exhibits promising insulin mimetic properties. In continuation of our structure activity relationship studies of metal complexes, we report herein the synthesis and characterization of the vanadium complexes of beta-diketonato ligand system with systematic variations of electronic and steric factors. Two complexes, VO(tmh)(2) (tmh = 2,2,6,6,-tetramethyl-3,5-heptanedione), and VO(hd)(2) (hd = 3,5-heptanedione) were synthesized and characterized by using different spectroscopic techniques. Elemental and mass spectral analysis supports the presence of two beta-diketonato ligands per VO(2+) unit. UV-Vis spectra in different solvents indicate coordination of coordinating solvent molecules at sixth position resulting in red shift of the band I transition. NMR and IR spectra reveal binding of coordinating solvent molecule at vacant sixth position trans to oxo group without releasing beta-diketonato ligands. Enzyme inhibition studies of these and other related oxovanadium(IV) complexes with beta-diketonato ligand system are conducted with snake venom phosphodiesterase I (SPVDE). All of these complexes showed significant inhibitory potential and were found to be non-competitive inhibitors against this enzyme.  相似文献   

5.
The complex formation equilibria of Zn(II) and Cd(II) with cephalexin have been studied through potentiometric titrations. Experimental data were analyzed using the least squares computer program SUPERQUAD. The stability constants were 1g beta ZnCEX+ = 2.40, 1g beta Zn(CEX)(OH) = -4.54, 1g beta CdCEX+ = 2.18, and 1g beta Cd(CEX)(OH) = -5.18 (I = 0.1 M NaNO3), CEX complexes of formulae Zn(CEX)2(3)H2O and Cd(CEX)(OH)H2O have been synthesized and characterized by elemental analysis, IR spectra, conductivity measurements, and electronic and NMR spectra. The thermal behavior of the synthesized compounds were studied by TGA and DTA. We conclude that the metal ion interacts with the amido group of CEX.  相似文献   

6.
The vibrational circular dichroism (VCD) spectra of dicarvone ( 1 ), dipinocarvone ( 2 ), and dimenthol ( 3 ) have been recorded in the range 900–3200 cm−1, encompassing the mid-infrared (mid-IR), the CO stretching, and the CH-stretching regions. For compound 3 also, the fundamental and the first overtone OH stretching regions have been investigated by IR/NIR absorption and VCD. Density functional theory (DFT) calculations allow one to interpret the IR and VCD spectra and to confirm the configuration/conformational studies previously conducted by X-ray diffraction. The most intense VCD signals are associated with the vibrational normal modes involving symmetry-related groups close to the CC bond connecting covalently the two molecular units. The vibrational exciton (VCDEC) model is fruitfully tested on the VCD data of compounds 1 and 2 for the spectroscopic regions at ~1700 cm−1, and the local mode model is tested on compound 3 at ~3500 and ~6500 cm−1. For compounds 1 and 2 also, ECD spectra are reported, and the exciton mechanism is tested also there, and connections to the VCDEC model are examined.  相似文献   

7.
Fullerene derivatives have often been used as effective scavengers for reactive oxygen species (ROS). This study was designed to test whether polyhydroxylated fullerene derivatives [C(60)(OH)(7+/-2)] protect against oxidative stress in cultured RAW 264.7 cells and ischemia-reperfused (IR) lungs. In RAW 264.7 cells, sodium nitroprusside (SNP, 1 mM) and H(2)O(2) (400 microM) caused a marked (90%) decrease in cell viability, and this decrease was dose dependently reversed by pretreatment with C(60)(OH)(7+/-2) (10-50 microM). The increase in ROS production induced by SNP and H(2)O(2) was significantly suppressed by C(60)(OH)(7+/-2). Also, the decrease in mitochondrial membrane potential induced by SNP and H(2)O(2) was significantly reversed by C(60)(OH)(7+/-2). However, high concentration of C(60)(OH)(7+/-2) (1 and 1.5 mM) lead to cell death (apoptosis or necrosis). In the isolated rat lung, the increases in pulmonary artery pressure and capillary filtration pressure induced by SNP during IR were reversed significantly by C(60)(OH)(7+/-2) (10 mg/kg). These results indicate that polyhydroxylated fullerene derivatives C(60)(OH)(7+/-2) at low concentrations protect against oxidative stress in RAW 264.7 cells and IR lungs.  相似文献   

8.
The chelating behavior of 2,6-diacetylpyridine bis(2-aminobenzoylhydrazone) (H2dapa) towards manganese(II), cadmium(II) and oxovanadium(IV) ions has been studied by elemental analyses, conductance measurements, magnetic properties and spectral (IR, 1H NMR, UV-Vis and EPR) studies. The IR spectral studies suggest the pentadentate nature of the ligand with pyridine nitrogen, two azomethine nitrogens and two carbonyl oxygen atoms as the ligating sites. Six coordinate structure for [VO(H2dapa)]SO4 · H2O and seven coordinate structures for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)Cl2] · H2O complexes have been proposed. Pentagonal bipyramidal geometry for [Mn(H2dapa)(Cl)(H2O)]Cl · 2H2O and [Cd(H2dapa)(Cl2)] · H2O complexes was confirmed by single crystal analysis. The X-band EPR spectra of the oxovanadium(IV) and manganese(II) complexes in the polycrystalline state at room (300 K) and also at liquid nitrogen temperature (77 K) were recorded and their salient features are reported.  相似文献   

9.
Fukuyama T  Matsuo K  Gekko K 《Chirality》2011,23(Z1):E52-E58
The electronic circular dichroism (ECD) spectra of three L-hydroxy acids (L-lactic acid, (+)-(S)-2-hydroxy-3-methylbutyric acid, and (-)-(S)-2-hydroxyisocaproic acid) were measured down to 160 nm in aqueous solution using a vacuum-ultraviolet ECD spectrophotometer. To assign the two positive peaks around 210 and 175 nm and the one negative peak around 190 nm in the observed spectra, the ECD spectrum of L-lactic acid was calculated using time-dependent density functional theory (DFT) for the optimized structures by DFT and a continuum model. The observed ECD spectrum was successfully reproduced as the average spectrum for four optimized structures with seven water molecules that localized around the COO(-) and OH groups of L-lactic acid. The positive peak around 210 nm and the negative peak around 185 nm in the calculated spectrum were attributable to the nπ* transition of the carboxyl group, with the latter peak also being influenced by the ππ* transition of the carboxyl group; however, the positive peak around 165 nm involved unassignable higher energy transitions. The comparison of the calculated ECD spectra for L-lactic acid and L-alanine revealed that the network with loose hydrogen bonding around the COO(-) and OH groups is responsible for the flexible conformation of hydroxy acids and complicated side-chain dependence of ECD spectra relative to amino acids.  相似文献   

10.
Two new complexes, ([Ru(phen)(2)(6-OH-dppz)](2+)) (1) and ([Ru(phen)(2)(6-NO(2)-dppz)](2+)) (2) (phen=1,10-phenanthroline; 6-OH-dppz=6-hydroxyl-dipyrido[3,2-a:2',3'-c]phenazine; 6-NO(2)-dppz=6-nitro-dipyrido[3,2-a:2',3'-c]phenazine), have been synthesized and characterized by elemental analysis, ES-MS (electrospray mass spectra), (1)H NMR, UV-Vis (UV-visible) and CV (cyclic voltammetry). The DNA-binding behaviors of both complexes have been studied by spectroscopic methods and viscosity measurements. The results indicate that the two complexes all bind to calf thymus DNA (CT-DNA) in an intercalative mode, and the DNA-binding affinity of complex 2 is greater than that of complex 1. In addition, complex 1 can promote photocleavage of pBR322 DNA upon irradiation, whereas complex 2 can promote cleavage of pBR322 DNA both upon irradiation and in the dark, with more efficient cleavage occurring upon irradiation. Theoretical studies for these complexes have been also carried out with the density functional theory (DFT) method. The difference in the DNA-binding behaviors of the two complexes can be reasonably explained by the DFT calculations.  相似文献   

11.
The capabilities and limitations of the Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional are investigated as applied to studies of mixed-valent multinuclear oxomanganese complexes. Benchmark calculations involve the analysis of structural, electronic and magnetic properties of di-, tri- and tetra-nuclear Mn complexes, previously characterized both chemically and spectroscopically, including the di-mu-oxo bridged dimers [Mn(III)Mn(IV)(mu-O)(2)(H(2)O)(2)(terpy)(2)](3+) (terpy=2,2':6,2'-terpyridine) and [Mn(III)Mn(IV)(mu-O)(2)(phen)(4)](3+) (phen=1,10-phenanthroline), the Mn trimer [Mn(3)O(4)(bpy)(4)(H(2)O)(2)](4+) (bpy=2,2'-bipyridine), and the tetramer [Mn(4)O(4)L(6)](+) with L=Ph(2)PO(2)(-). Furthermore, the density functional theory (DFT) B3LYP level is applied to analyze the hydrated Mn(3)O(4)CaMn cluster completely ligated by water, OH(-), Cl(-), carboxylate and imidazole ligands, analogous to the '3+1 Mn tetramer' of the oxygen-evolving complex of photosystem II. It is found that DFT/B3LYP predicts structural and electronic properties of oxomanganese complexes in pre-selected spin-electronic states in very good agreement with X-ray and magnetic experimental data, even when applied in conjunction with rather modest basis sets. However, it is conjectured that the energetics of low-lying spin-states is beyond the capabilities of the DFT/B3LYP level, constituting a limitation to mechanistic studies of multinuclear oxomanganese complexes where until now the performance of DFT/B3LYP has raised little concern.  相似文献   

12.
The reaction of RuCl(3)(NO).H(2)O with 4-methylpyrimidine (MePYM) and ethylisonicotinate (EINT), in absolute ethanol at 40-55 degrees C afforded crystalline trans-[RuCl(3)(NO)L(2)] complexes. Structural studies via X-ray diffraction, and spectroscopic methods (NMR, IR, UV-visible (UV-Vis)) revealed that the molecular structures have the two Ls in trans positions (axial) and the chloride anions and the NO(+) cation as equatorial ligands; pyrimidine...pyrimidine pairing pattern via two weak C-H...N interactions occur. The molecular structures for the EINT derivative was inferred from spectroscopy and computations. Under irradiation at 366 nm several solutions of the title compounds deliver NO via first order processes. Visible light (420-700 nm) does not produce significant NO release from CH(2)Cl(2) and CH(3)CN solutions within 24h.  相似文献   

13.
Five heterometallic compounds with formulae [Ba(H2O)4Cr2(μ-OH)2(nta)2] · 3H2O (I), [M(bpy)2(H2O)2] [Cr2(OH)2(nta)2] · 7H2O, where M2+ = Zn, (II); Ni, (III); Co, (IV) and [Mn(H2O)3(bpy)Cr2(OH)2(nta)2] · (bpy) · 5H2O (V); bpy = 2,2′-bipyridine, (nta = nitrilotriacetate ion) have been prepared by reaction of I with the corresponding MII-sulfates in the presence of 2,2′-bipyridine. Substances I–V have been characterized by magnetic susceptibility measurements, EPR and X-ray determinations. I represents a 2D coordination polymer formed by coordination of centrosymmetrical dimeric chromium(III) units and Barium cations. The 10-coordinate Ba polyhedron is completed by four water molecules. Compounds II–IV are isostructural and consist of non-centrosymmetric dimeric anions [Cr2(μ-OH)2(nta)2]2−, complex cations [MII(bpy)2(H2O)2]2+ and solvate water molecules. The octahedral coordination of chromium atoms implies four donor atoms of the nta3− ligands and two bridging OH groups. Multiple hydrogen bonds of coordinated and solvate water molecules link anions and cations in a 3D network. A similar [Cr2(μ-OH)2(nta)2]2− unit is found in V. The bridging function is performed by a carboxylate oxygen atom of the nta ligand that leads to the formation of a trinuclear complex [Mn(bpy)(H2O)2Cr2(μ-OH)2(nta)2]. Experimental and calculated frequency and temperature dependences of EPR spectra of these compounds are presented. The fine structure appearing on the EPR spectra of compound V is analyzed in detail at different temperatures. It is established that the main part of the EPR signals is due to the transitions in the spin states of a spin multiplet with S = 2. Analyses of experimental and calculated spectra confirm the absence of interaction between metal ions (MII) and Cr-dimers in complexes III and IV and the presence of weak Mn–Cr interactions in V. The temperature dependence of magnetic susceptibilities for I–V was fitted on the basis of the expression derived from isotropic Hamiltonian including a bi-quadratic exchange term.  相似文献   

14.
This article reports vibrational circular dichroism (VCD) and electronic circular dichroism (ECD) spectroscopic studies in acetonitrile on the chiral Rh(2)(O-Phe-Cbz)(1)(OAc)(3) and Rh(2)(O-Phe-Ac)(1)(OAc)(3) complexes (abbreviated Rh(2)Z(1) and Rh(2)Ac(1) , respectively; Phe, L-phenylalanine; Cbz, benzyloxycarbonyl; Ac, acetyl) supported by theoretical calculations. The ECD spectra of the complexes depend on temperature that indicates the conformational mobility of the chiral ligands. Calculations of the VCD spectra were performed at ab initio (DFT) level of theory using Gaussian 03 [B3LYP functional combined with the LANL2DZ basis set for the dirhodium core and the 6-31G(d) basis set for other atoms]. The population-weighted sums of the computed VCD spectra of the conformers are in excellent agreement with the experimental VCD spectra. The combination of the VCD and ECD spectroscopic methods led us to the structural characterization of the complexes.  相似文献   

15.
Two new Ru(II) complexes [Ru(L)(4)(dppz)](2+) (L=imidazole (Im), 1-methylimidazole (MeIm); dppz=dipyrido[3,2-a:2',3'-c]phenazine), have been synthesized and characterized in detail by elemental analysis, (1)H NMR, Electrospray ionization mass spectrometry (ESI-MS) and UV-visible (UV-Vis) spectroscopic techniques. The interaction of these complexes with calf thymus DNA (CT-DNA) has been explored by using electronic absorption titration, competitive binding experiment, circular dichroism (CD), thermal denaturation and viscosity measurements. The experimental results show that: both the two complexes can bind to DNA in an intercalation mode; the DNA-binding affinity of complex [Ru(Im)(4)(dppz)](2+)1 (K(b)=2.5 x 10(6)M(-1)) is greater than that of complex [Ru(MeIm)(4)(dppz)](2+)2 (K(b)=1.1 x 10(6)M(-1)). Moreover, it is very interesting to find that the circular dichroic spectrum of DNA-complex 1 adduct, in which both bands centered at 277 nm and 236 nm are all negative, is very different from those of DNA-complex 2 adduct and other Ru(II) complexes binding to DNA in general intercalation mode. It may be due to the hydrogen-bonding effect or the contribution of induced CD signals of complex 1. Another interesting finding is that the hypochromism of the complexes is not linear relation to their DNA-binding affinities. In order to deeply study these experimental phenomena and trends, the density functional theory (DFT) and time-dependent DFT (TDDFT) computations were carried out, and on the basis of the DFT/TDDFT results and the frontier molecular orbital theory, the trend in DNA-binding affinities, the spectral properties as well as the interesting phenomena of larger extent of hypochromism but relatively smaller K(b) values for the title complexes have been reasonably explained.  相似文献   

16.
ESIMS reveals that methanol solutions of 1:1, 1:2 and 1:3 mixtures of Zn(ClO4)2 · 6H2O and 1,10-phenanthroline (phen) generate [Zn(phen)(OH)]+, [Zn(phen)(H2O)4(OH)]+, [Zn(phen)2(H2O)(OH)]+and [Zn(phen)2(H2O)4(OH)]+ ions in the gas phase. DFT calculations at the B3LYP/LanL2DZ level show that zinc is planar tricoordinate in [Zn(phen)(OH)]+ and the cis configuration is more stable than the trans one for the hexacoordinate ion [Zn(phen)2(H2O)(OH)]+. DFT calculations also show that the [Zn(phen)(H2O)4(OH)]+ and [Zn(phen)2(H2O)4(OH)]+ ions are actually [Zn(phen)(H2O)(OH)]+ · 3H2O and [Zn(phen)2(H2O)(OH)]+ · 3H2O containing extended motifs of H-bonded water clusters. The aqua species corresponding to the monohydroxo ions are acidic. Their acid dissociations are modeled collectively by equilibrium (see below) where other ligands around Zn are not specified. An attempt is then made to estimate Ka
  相似文献   

17.
Adsorption of [(OH(2))(terpy)Mn(mu-O)(2)Mn(terpy)(OH(2))](3+) (terpy=2,2':6',2"-terpyridine) (1) onto montmorillonite K10 (MK10) yielded catalytic dioxygen (O(2)) evolution from water using a Ce(IV) oxidant. The Mn K-edge X-ray absorption near edge structure (XANES) of the 1/MK10 hybrid suggested that the oxidation state of the di-mu-oxo Mn(2) core could be Mn(III)-Mn(IV). However the pre-edge peak in the XANES spectrum of 1 adsorbed on MK10 is different from the neat 1 powder. The kinetic analysis of O(2) evolution showed that the catalysis requires cooperation of two equivalents of 1 adsorbed on MK10. The reaction of the [(bpy)(2)Mn(mu-O)(2)Mn(bpy)(2)](3+) (bpy=2,2'-bipyridine) (2)/MK10 hybrid with a Ce(IV) oxidant evolved O(2). However, the turnover number value was less than unity for 2/MK10, showing that 2 adsorbed on MK10 does not work as a catalyst. The terminal water ligands could be an important for the catalysis by adsorbed 1. The mechanism of O(2) production by photosynthetic oxygen evolving complex is discussed based on catalytic O(2) evolution by 1 adsorbed on MK10.  相似文献   

18.
Cobalt(III) complexes of the type [Co(N-N)2L](ClO4)2.H2O [where L=anionic form of para-substituted benzaldehyde-benzoylhydrazone (BHBX-); X=H, Me, OMe, OH, Cl or NO2; N-N=2,2'-bipyridine (bpy) or 1,10-phenanthroline (phen)] have been synthesized and characterized through UV-Vis, IR, NMR and electrochemical studies. The IR spectral frequencies support the mode of coordination of BHBX to the metal through the imino nitrogen and enolic oxygen atoms. The electronic absorption spectra exhibit metal to ligand charge transfer (MLCT) transition around 450 nm together with intraligand (IL) bands that are comparable to that of [Co(phen/bpy)3]3+. In acetonitrile solution these complexes show two well defined redox couples corresponding to Co(III/II) and Co(II/I) processes. Binding of these complexes with herring sperm DNA have been investigated by spectroscopic and voltammetric methods. The lower binding constant values of these complexes with respect to the [Co(phen/bpy)3]3+ are ascribed to the polar interaction of the substituted benzoylhydrazone moiety with the sugar-phosphate backbone of the DNA. The UV spectrum shows reasonable hypochromism with slight (2-4 nm) red shift, while the cyclic voltammogram shows decrease in current intensity along with a very small shift in the formal potential of the Co(III/II) redox couple. These experimental results indicate that phen mixed ligand complexes bind to DNA through an intercalative mode more effectively than their bpy counterparts. These complexes are also found to have good antimicrobial activity.  相似文献   

19.
Three new complexes, [Zn(PPePeP-PNH)(CH3OH)]2(CH3OH) [PPePeP-PHN = N-(1-phenyl-3-phenylethyl-4-phenylethylene-5-pyrazolone) p-nitrobenzoylhydrazide] (1), [Mn(PPePeP-PNH)(CH3OH)2]2(CH3OH) (2), [Mn(PM4MbP-PNH)(C2H5OH)3] [PM4MbP-PHN = N-(1-phenyl-3-methyl-4-(p-methylbenzoylene)-5-pyrazolone) p-nitrobenzoylhydrazide] (3), have been prepared and characterized by elemental analyses, IR spectra, UV-Vis absorption spectra, thermal-analyses and X-ray diffraction studies. The structural analyses show that the N(2) atoms of the pyrazolyl heterocycles play an important role in building the N-H?O hydrogen bonds of 1, 2, 3 and 1, 2 formed 2D networks and 3 formed 1D chain linked by hydrogen bonds, respectively.  相似文献   

20.
Two dinuclear oxovanadium(IV) compounds [V(O)(NMet)(μ-OMe)]2 · MeOH (1) and [V(O)(NThr)(μ-OMe)]2 · MeOH (2) were prepared by the reaction of VOSO4 and ONN donor ligands, HNMet and HNThr (HNMet =N-(2-pyridylmethyl)-dl-methionine, HNThr = N-(2-pyridylmethyl)-dl-threonine) derived from 2-pyridinecarbaldehyde and dl-methionine/dl-threonine. Both of these compounds are characterized by single crystal X-ray diffraction. X-ray crystallography revealed that the two vanadium(IV) compounds are both dinuclear structures bridged by methanol groups. Each vanadium atom is six coordinated in a distorted octahedral environment. IR spectroscopy and EPR spectra for these two compounds are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号