首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Liu B  Fu Y  Wang Z  Zhou S  Sun Y  Wu Y  Xu A 《PloS one》2011,6(10):e25794
HLA-DRB1 is the most polymorphic MHC (major histocompatibility complex) class II gene in human, and plays a crucial role in the development and function of the immune system. Extensive polymorphisms exist in the promoter and 3'-UTR of HLA-DRB1, especially a LTR (Long terminal repeat) element in the promoter, which may be involved in the expression regulation. However, it remains unknown how the polymorphisms in the whole promoter region and 3'-UTR to regulate the gene expression. In this study, we investigated the extensive polymorphisms in the HLA-DRB1 promoter and 3'-UTR, and how these polymorphisms affect the gene expression in both independent and jointly manners. It was observed that most of the haplotypes in the DRB1 promoter and 3'-UTR were clustered into 4 conserved lineages (H1, H2, H3 and H4), and showed high linkage disequilibrium. Compared with H1 and H2 lineage, a LTR element in the promoter of H3 and H4 lineage significantly suppressed the promoter activity, whereas the activity of the linked 3'-UTR increased, leading to no apparent difference in the final expression product between H1/H2 and H3/H4 lineage. Nevertheless, compared with the plasmid with a promoter and 3'-UTR from the same lineage, the recombinant plasmid with a promoter from H2 and a 3'-UTR from H3 showed about double fold increased luciferase activity, Conversely, the recombinant plasmid with a promoter from H3 and a 3'-UTR from H2 resulted in about 2-fold decreased luciferase activity. These results indicate that the promoter and 3'-UTR of HLA-DRB1 may antagonistically regulate the gene expression, which may be subjected to stabilizing selection. These findings may provide a novel insight into the mechanisms of the diseases associated with HLA-DRB1 genes.  相似文献   

4.
5.
6.
7.
8.
构建一种以分泌型荧光素酶基因(Gluc)作为报告基因的仙台病毒BB1株微小基因组质粒,比较了CMV启动子与T7启动子对仙台病毒微小基因组的拯救效率。首先设计并合成锤头状核酶序列,仙台病毒trailer、L基因非编码区、N基因非编码区和leader序列以及丁型肝炎病毒核酶序列,插入含有CMV和T7双启动子的质粒pVAX1中,获得仙台微小基因组的通用型载体pVAX-miniSeV。将Gluc基因插入pVAX-miniSeV中,分别获得正向插入的仙台病毒微小基因组载体pVAX-miniSeV-Gluc(+)和反向插入的pVAX-miniSeV-Gluc(-)。用pVAX-miniSeV-Gluc(+)转染BHK21细胞能在上清中检测到高水平的Gluc活性,表明其中的CMV启动子具有正常转录功能。将pVAX-miniSeVGluc(-)和仙台病毒N、P、L蛋白表达质粒共转染BSR T7/5细胞(稳定表达T7RNA聚合酶的BHK-21细胞)检测到Gluc的高效表达,表明pVAX-miniSeV-Gluc(-)能够被有效拯救;但在BHK-21细胞中却未检测到Gluc的有效表达,提示该载体中的CMV启动子对仙台病毒微小基因组的拯救效率可能没有明显作用。为了进一步了解CMV与T7启动子各自对于仙台病毒微小基因组拯救的作用,本研究又构建了单独含有CMV或T7启动子的仙台病毒微小基因组载体pCMV-miniSeV-Gluc(-)和pT7-miniSeV-Gluc(-)。将这两种载体和仙台病毒N、P、L蛋白表达质粒分别共转染BSR T7/5细胞,结果pT7-miniSeV-Gluc(-)共转染组检测到了Gluc的高效表达,而pCMV-miniSeV-Gluc(-)共转染组未检测到,证实了通用型载体pVAX-miniSeV中仅T7启动子对仙台病毒微小基因组的拯救起了关键作用,而CMV启动子作用不明显。本研究成功构建了一种通用型双启动子仙台病毒微小基因组载体pVAX-miniSeV,并证明了T7启动子系统对仙台病毒微小基因组拯救的关键作用。本研究为下一步构建仙台病毒全基因感染性克隆打下了基础。  相似文献   

9.
10.
11.
12.
13.
14.
15.
16.
We have identified previously a novel complex mutant allele in the cystic fibrosis transmembrane conductance regulator (CFTR) gene in a patient affected with cystic fibrosis (CF). This allele contained a mutation in CFTR exon 11 known to cause CF (S549R(T>G)), associated with the first alteration described so far in the minimal CFTR promoter region (-102T>A). Studies on genotype-phenotype correlations revealed striking differences between patients carrying mutation (S549R(T>G)) alone, who had a severe disease, and patients carrying the complex allele (-102(T>A)+S549R(T>G)), who exhibited milder forms of CF. We thus postulated that the sequence change (-102T>A) may attenuate the effects of the severe (S549R(T>G)) mutation through regulation of CFTR expression. Analysis of transiently transfected cell lines with wild-type and -102A variant human CFTR-directed luciferase reporter genes demonstrates that constructs containing the -102A variant (which creates a Yin Yang 1 (YY1) core element) increases CFTR expression significantly. Electrophoretic mobility shift assays indicate that the -102 site is located in a region of multiple DNA-protein interactions and that the -102A allele recruits specifically an additional nuclear protein related to YY1. The finding that the YY1-binding allele causes a significant increase in CFTR expression in vitro may allow a better understanding of the milder phenotype observed in patients who carry a severe CF mutation within the same gene.  相似文献   

17.
Msx2 is a homeobox gene expressed in multiple embryonic tissues which functions as a key mediator of numerous developmental processes. YY1 is a bi-functional zinc finger protein that serves as a repressor or activator to a variety of promoters. The role of YY1 during embryogenesis remains unknown. In this study, we report that Msx2 is regulated by YY1 through protein–DNA interactions. During embryogenesis, the expression pattern of YY1 was observed to overlap in part with that of Msx2. Most notably, during first branchial arch and limb development, both YY1 and Msx2 were highly expressed, and their patterns were complementary. To test the hypothesis that YY1 regulates Msx2 gene expression, P19 embryonal cells were used in a number of expression and binding assays. We discovered that, in these cells, YY1 activated endogenous Msx2 gene expression as well as Msx2 promoter–luciferase fusion gene activity. These biological activities were dependent on both the DNA binding and activation domains of YY1. In addition, YY1 bound specifically to three YY1 binding sites on the proximal promoter of Msx2 that accounted for this transactivation. Mutations introduced to these sites reduced the level of YY1 transactivation. As bone morphogenetic protein type 4 (BMP4) regulates Msx2 expression in embryonic tissues and in P19 cells, we further tested whether YY1 is the mediator of this BMP4 activity. BMP4 did not induce the expression of YY1 in early mouse mandibular explants, nor in P19 cells, suggesting that YY1 is not a required mediator of the BMP4 pathway in these tissues at this developmental stage. Taken together, these findings suggest that YY1 functions as an activator for the Msx2 gene, and that this regulation, which is independent of the BMP4 pathway, may be required during early mouse craniofacial and limb morphogenesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号