首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intraabdominal fat in humans is located in two major depots, the omental and mesenteric. We compared basal and stimulated lipolysis in adipose tissue from these two depots and the subcutaneous abdominal depot of obese women and men. Omental fat cells of women are smaller and have lower rates of basal lipolysis than in men. Basal Iipolysis rates are significantly higher in subcutaneous than intraabdominal adipose tissues of both genders. In men, the incremental lipolytic response to norepinephrine is significantly greater in both intraabdominal fat depots than in the subcutaneous fat, while in women tlie response of tlie mesenteric is lower than tlie omental. In women, but not men, responsiveness to tlie beta agonist isoproterenol is also increased in omental tissue. Thus, in women, omental and mesenteric adipose tissues show distinctly different metabolic properties which may moderate the impact of intraabdominal obesity.  相似文献   

2.
In response to cold, norepinephrine (NE)-induced triacylglycerol hydrolysis (lipolysis) in adipocytes of brown adipose tissue (BAT) provides fatty acid substrates to mitochondria for heat generation (adaptive thermogenesis). NE-induced lipolysis is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin, a lipid droplet-associated protein that is the major regulator of lipolysis. We investigated the role of perilipin PKA phosphorylation in BAT NE-stimulated thermogenesis using a novel mouse model in which a mutant form of perilipin, lacking all six PKA phosphorylation sites, is expressed in adipocytes of perilipin knockout (Peri KO) mice. Here, we show that despite a normal mitochondrial respiratory capacity, NE-induced lipolysis is abrogated in the interscapular brown adipose tissue (IBAT) of these mice. This lipolytic constraint is accompanied by a dramatic blunting ( approximately 70%) of the in vivo thermal response to NE. Thus, in the presence of perilipin, PKA-mediated perilipin phosphorylation is essential for NE-dependent lipolysis and full adaptive thermogenesis in BAT. In IBAT of Peri KO mice, increased basal lipolysis attributable to the absence of perilipin is sufficient to support a rapid NE-stimulated temperature increase ( approximately 3.0 degrees C) comparable to that in wild-type mice. This observation suggests that one or more NE-dependent mechanism downstream of perilipin phosphorylation is required to initiate and/or sustain the IBAT thermal response.  相似文献   

3.
In support of leptin's physiological role as humoral signal of fat mass, we have shown that adipocyte volume is a predominant determinant of leptin mRNA levels in anatomically distinct fat depots in lean young mice in the postabsorptive state. In this report, we investigated how obesity may affect the relationship between leptin mRNA levels and adipocyte volume in anatomically distinct fat depots in mice with genetic (Lep(ob)/Lep(ob) and A(y)/+), diet-induced, and aging-related obesity. In all of the obese mice examined, tissue leptin mRNA levels relative to the average adipocyte volume were lower in the perigonadal and/or retroperitoneal than in the inguinal fat depots and were lower than those of the lean young mice in the perigonadal fat depot. A close, positive correlation between leptin mRNA level and adipocyte volume was present from small to hypertrophic adipocytes within each perigonadal and inguinal fat pad in the obese mice, but the slopes of the regression lines relating leptin mRNA level to adipocyte volume were significantly lower in the perigonadal than in the inguinal fat pads of the same mice. These results suggest that obesity per se is associated with a decreased leptin gene expression per unit of fat mass in mice and that the positive correlation between leptin mRNA level and adipocyte volume is an intrinsic property of adipocytes that is not disrupted by adipocyte hypertrophy in obese mice.  相似文献   

4.
Biochemical and cell-based studies have identified the G0S2 (G0/G1 switch gene 2) as a selective inhibitor of the key intracellular triacylglycerol hydrolase, adipose triglyceride lipase. To better understand the physiological role of G0S2, we constructed an adipose tissue-specific G0S2 transgenic mouse model. In comparison with wild type animals, the transgenic mice exhibited a significant increase in overall fat mass and a decrease in peripheral triglyceride accumulation. Basal and adrenergically stimulated lipolysis was attenuated in adipose explants isolated from the transgenic mice. Following fasting or injection of a β3-adrenergic agonist, in vivo lipolysis and ketogenesis were decreased in G0S2 transgenic mice when compared with wild type animals. Consequently, adipose overexpression of G0S2 prevented the “switch” of energy substrate from carbohydrates to fatty acids during fasting. Moreover, G0S2 overexpression promoted accumulation of more and larger lipid droplets in brown adipocytes without impacting either mitochondrial morphology or expression of oxidative genes. This phenotypic change was accompanied by defective cold adaptation. Furthermore, feeding with a high fat diet caused a greater gain of both body weight and adiposity in the transgenic mice. The transgenic mice also displayed a decrease in fasting plasma levels of free fatty acid, triglyceride, and insulin as well as improved glucose and insulin tolerance. Cumulatively, these results indicate that fat-specific G0S2 overexpression uncouples adiposity from insulin sensitivity and overall metabolic health through inhibiting adipose lipolysis and decreasing circulating fatty acids.  相似文献   

5.
Transgenic mice overexpressing leptin (LepTg) exhibit substantial reductions in adipose mass. Since the binding of leptin to its receptor activates the sympathetic nervous system, we reasoned that the lean state of the LepTg mice could be caused by chronic lipolysis. Instead, the LepTg mice exhibited a low basal lipolysis state and their lean phenotype was not dependent on the presence of beta3-adrenergic receptors. In their white adipose tissue, protein levels of protein kinase A, hormone-sensitive lipase, and ADRP were not impaired. However, compared to normal mice, perilipin, perilipin mRNA, and cAMP-stimulated PKA activity were significantly attenuated. Overall, we demonstrate that the lean phenotype of the LepTg mice does not result in a chronically elevated lipolytic state, but instead in a low basal lipolysis state characterized by a decrease in perilipin and PKA activity in white fat.  相似文献   

6.
The morphological and functional differences between lipid droplets (LDs) in brown (BAT) and white (WAT) adipose tissues will largely be determined by their associated proteins. Analysing mRNA expression in mice fat depots we have found that most LD protein genes are expressed at higher levels in BAT, with the greatest differences observed for Cidea and Plin5. Prolonged cold exposure, which induces the appearance of brown-like adipocytes in mice WAT depots, was accompanied with the potentiation of the lipolytic machinery, with changes in ATGL, CGI-58 and G0S2 gene expression. However the major change detected in WAT was the enhancement of Cidea mRNA. Together with the increase in Cidec, it indicates that LD enlargement through LD–LD transference of fat is an important process during WAT browning. To study the dynamics of this phenotypic change, we have applied 4D confocal microscopy in differentiated 3T3-L1 cells under sustained β-adrenergic stimulation. Under these conditions the cells experienced a LD remodelling cycle, with progressive reduction on the LD size by lipolysis, followed by the formation of new LDs, which were subjected to an enlargement process, likely to be CIDE-triggered, until the cell returned to the basal state. This transformation would be triggered by the activation of a thermogenic futile cycle of lipolysis/lipogenesis and could facilitate the molecular mechanism for the unilocular to multilocular transformation during WAT browning. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

7.
The purpose of this investigation was to explore interactions between adrenergic stimulation, glucocorticoids, and insulin on the lipolytic rate in isolated human adipocytes from subcutaneous and omental fat depots, and to address possible sex differences. Fat biopsies were obtained from 48 nondiabetic subjects undergoing elective abdominal surgery. Lipolysis rate was measured as glycerol release from isolated cells and proteins involved in lipolysis regulation were assessed by immunoblots. Fasting blood samples were obtained and metabolic and inflammatory variables were analyzed. In women, the rate of 8-bromo-cAMP- and isoprenaline-stimulated lipolysis was approximately 2- and 1.5-fold higher, respectively, in subcutaneous compared to omental adipocytes, whereas there was no difference between the two depots in men. Dexamethasone treatment increased the ability of 8-bromo-cAMP to stimulate lipolysis in the subcutaneous depot in women, but had no consistent effects in fat cells from men. Protein kinase A, Perilipin A, and hormone sensitive lipase content in adipocytes was not affected by adipose depot, sex, or glucocorticoid treatment. In conclusion, catecholamine and glucocorticoid regulation of lipolysis in isolated human adipocytes differs between adipose tissue depots and also between sexes. These findings may be of relevance for the interaction between endogenous stress hormones and adipose tissue function in visceral adiposity and the metabolic syndrome.  相似文献   

8.
Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.  相似文献   

9.
Existing theories of the origin of HIV-related adipose tissue redistribution syndrome cannot adequately explain simultaneous hypertrophy of certain depots and atrophy of others, or its occasional occurrence in untreated HIV infection. These experiments explore the hypothesis that hypertrophy of lymphoid tissue-containing adipose depots arises from drug-induced disruption to local interactions between perinodal adipocytes and activated lymphoid cells. Guinea pigs were fed on plain or lipid-supplemented (10% suet, sunflower or fish oil) chow ad libitum or restricted, and the popliteal lymph nodes were activated by repeated injection of lipopolysaccharide. Explants of perinodal and other samples from popliteal, mesentery, omentum and nodeless perirenal and epididymal depots were incubated with lymphoid cells and zidovudine, didanosine, lamivudine or stavudine at physiological concentrations (0.1-1 microg/ml) or interleukin-10 and interleukin-6, and basal and maximum lipolysis was measured. All drugs increased lipolysis from perinodal adipocytes, especially mesenteric, though less than exogenous cytokines. Effects on adipocytes from non-perinodal sites and nodeless depots were minimal. The sunflower-oil diet enhanced, and the fish-oil and restricted diets reduced, these effects. We conclude that these NRTI antiretroviral drugs modulate the local interactions between perinodal adipocytes and activated lymphoid cells. Local interactions, and hence the selective hypertrophy of node-containing adipose depots, may be curtailed by dietary manipulation.  相似文献   

10.
Growth hormone (GH) has a lipolytic effect in adipose tissue but this effect may differ in adipose tissue from various fat depots. This latter possibility was investigated in the present study, in which the effects of GH in vivo on catecholamine-induced lipolysis and the number of β-adrenergic receptors in isolated adipocytes from different fat depots of hypophysectomized rats were investigated. Female and male Sprague-Dawley rats were hypophysectomized or sham-operated at 45 days of age. One week after the operation, hormonal replacement therapy with L-thyroxine and hydrocortisone acetate was given. In addition, groups of rats were treated with GH (1.33 mg/kg per day, given as two daily subcutaneous injections). After 1 week of hormonal treatment, adipocytes were isolated from the parametrial, epididymal and inguinal fat pads, and glycerol release after catecholamine-stimulation and 125I-cyanopindolol binding were measured. Hypophysectomy resulted in a marked decrease in the lipolytic response to catecholamines. GH treatment significantly increased catecholamine-induced lipolysis with similar effects in adipocytes from parametrial or epididymal and inguinal fat depots in both female and male rats. There were no differences between norepinephrine compared with isoproterenol-induced responses. 125I-cyanopindolol binding was reduced after hypophysectomy and normalized by GH treatment, without differences between parametrial and inguinal adipose tissue regions. We conclude that the lipolytic effects of GH in the rat may partly be mediated by a stimulatory effect on β-adrenergic receptors in adipocytes. In addition, GH exerted similar effect on catecholamine-induced lipolysis and β-adrenergic receptors in adipocytes from parametrial, epididymal and inguinal fat depots.  相似文献   

11.
Fatty acid-binding proteins (FABPs) facilitate the diffusion of fatty acids within cellular cytoplasm. Compared with C57Bl/6J mice maintained on a high-fat diet, adipose-FABP (A-FABP) null mice exhibit increased fat mass, decreased lipolysis, increased muscle glucose oxidation, and attenuated insulin resistance, whereas overexpression of epithelial-FABP (E-FABP) in adipose tissue results in decreased fat mass, increased lipolysis, and potentiated insulin resistance. To identify the mechanisms that underlie these processes, real-time PCR analyses indicate that the expression of hormone-sensitive lipase is reduced, while perilipin A is increased in A-FABP/aP2 null mice relative to E-FABP overexpressing mice. In contrast, de novo lipogenesis and expression of genes encoding lipoprotein lipase, CD36, long-chain acyl-CoA synthetase 5, and diacylglycerol acyltransferase are increased in A-FABP/aP2 null mice relative to E-FABP transgenic animals. Consistent with an increase in de novo lipogenesis, there was an increase in adipose C16:0 and C16:1 acyl-CoA pools. There were no changes in serum free fatty acids between genotypes. Serum levels of resistin were decreased in the E-FABP transgenic mice, whereas serum and tissue adiponectin were increased in A-FABP/aP2 null mice and decreased in E-FABP transgenic animals; leptin expression was unaffected. These results suggest that the balance between lipolysis and lipogenesis in adipocytes is remodeled in the FABP null and transgenic mice and is accompanied by the reprogramming of adipokine expression in fat cells and overall changes in plasma adipokines.  相似文献   

12.
TNF-α potently stimulates basal lipolysis in adipocytes, which may contribute to hyperlipidemia and peripheral insulin resistance in obesity. Recent studies show that adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL) act sequentially in catalyzing the first two steps of adipose lipolysis in response to β-adrenergic stimulation. Here, we sought to determine their functional roles in TNF-α-induced lipolysis. Silencing of ATGL expression in adipocytes almost completely abolished basal and TNF-α-induced glycerol release. In comparison, the glycerol release under the same conditions was only partially decreased upon reduction in expression of either HSL or the ATGL coactivator CGI-58. Interestingly, overexpression of ATGL restored the lipolytic rates in cells with silenced HSL or CGI-58, indicating a predominant role for ATGL. While expression of ATGL, HSL and CGI-58 remains mostly unaffected, TNF-α treatment caused a rapid abrogation of the ATGL inhibitory protein G0S2. TNF-α drastically decreased the level of G0S2 mRNA, and the level of G0S2 protein could be maintained by inhibiting proteasomal protein degradation using MG-132. Furthermore, coexpression of G0S2 was able to significantly decrease TNF-α-stimulated lipolysis mediated by overexpressed ATGL or CGI-58. We propose that the early reduction in G0S2 content is permissive for TNF-α-induced lipolysis.  相似文献   

13.
The hydrolysis of triglycerides in adipocytes, termed lipolysis, provides free fatty acids as energy fuel. Murine lipolysis largely depends on the activity of adipose triglyceride lipase (ATGL), which is regulated by two proteins annotated as comparative gene identification-58 (CGI-58) and G0/G1 switch gene-2 (G0S2). CGI-58 activates and G0S2 inhibits ATGL activity. In contrast to mice, the functional role of G0S2 in human adipocyte lipolysis is poorly characterized. Here we show that overexpression or silencing of G0S2 in human SGBS adipocytes decreases and increases lipolysis, respectively. Human G0S2 is upregulated during adipocyte differentiation and inhibits ATGL activity in a dose-dependent manner. Interestingly, C-terminally truncated ATGL mutants, which fail to localize to lipid droplets, translocate to the lipid droplet upon coexpression with G0S2, suggesting that G0S2 anchors ATGL to lipid droplets independent of ATGL''s C-terminal lipid binding domain. Taken together, our results indicate that G0S2 also regulates human lipolysis by affecting enzyme activity and intracellular localization of ATGL. Increased lipolysis is known to contribute to the pathogenesis of insulin resistance, and G0S2 expression has been shown to be reduced in poorly controlled type 2 diabetic patients. Our data indicate that downregulation of G0S2 in adipose tissue could represent one of the underlying causes leading to increased lipolysis in the insulin-resistant state.  相似文献   

14.
Pond CM  Mattacks CA 《Cytokine》2002,17(3):131-139
The effects of repeated local immune challenges with lipopolysaccharide (LPS) over 24 h on basal and noradrenaline-stimulated lipolysis and the development of sensitivity to interleukin-4 and tumour necrosis factor-alpha in adipocytes associated with lymph nodes were studied in adult guinea-pigs. Properties characteristic of perinodal adipocytes appeared in adipocytes at least 10 mm from the locally stimulated popliteal lymph node within 12 h, and in other node-containing depots over 24 h. All effects appeared first in perinodal adipocytes and spread as though in response to signals emanating from the enclosed lymph node. The popliteal depot was more completely activated than the mesenteric, but its maximum rate of lipolysis/100 adipocytes was lower. None of the pre-treatments in vivo, nor incubation with cytokines in vitro modulated lipolysis in adipocytes from the nodeless perirenal depot. The sensitivity of the perinodal adipocytes to cytokines changed within 3 h of immune stimulation, preceding detectable increases in lipolysis. Cytokine-stimulated and noradrenaline-stimulated lipolysis sum, suggesting separate pathways. We conclude that sustained local activation of a single popliteal lymph node recruits additional adipocytes in node-containing depots only. Signals spread from lymph nodes to surrounding adipocytes, but the time courses of activation of adipocytes and their maximum responses differ between the mesenteric and popliteal depots.  相似文献   

15.
Hormone-sensitive lipase (HSL) is the predominant lipase effector of catecholamine-stimulated lipolysis in adipocytes. HSL-dependent lipolysis in response to catecholamines is mediated by protein kinase A (PKA)-dependent phosphorylation of perilipin A (Peri A), an essential lipid droplet (LD)-associated protein. It is believed that perilipin phosphorylation is essential for the translocation of HSL from the cytosol to the LD, a key event in stimulated lipolysis. Using adipocytes retrovirally engineered from murine embryonic fibroblasts of perilipin null mice (Peri-/- MEF), we demonstrate by cell fractionation and confocal microscopy that up to 50% of cellular HSL is LD-associated in the basal state and that PKA-stimulated HSL translocation is fully supported by adenoviral expression of a mutant perilipin lacking all six PKA sites (Peri Adelta1-6). PKA-stimulated HSL translocation was confirmed in differentiated brown adipocytes from perilipin null mice expressing an adipose-specific Peri Adelta1-6 transgene. Thus, PKA-induced HSL translocation was independent of perilipin phosphorylation. However, Peri Adelta1-6 failed to enhance PKA-stimulated lipolysis in either MEF adipocytes or differentiated brown adipocytes. Thus, the lipolytic action(s) of HSL at the LD surface requires PKA-dependent perilipin phosphorylation. In Peri-/- MEF adipocytes, PKA activation significantly enhanced the amount of HSL that could be cross-linked to and co-immunoprecipitated with ectopic Peri A. Notably, this enhanced cross-linking was blunted in Peri-/- MEF adipocytes expressing Peri Adelta1-6. This suggests that PKA-dependent perilipin phosphorylation facilitates (either direct or indirect) perilipin interaction with LD-associated HSL. These results redefine and expand our understanding of how perilipin regulates HSL-mediated lipolysis in adipocytes.  相似文献   

16.
Adipocytes serve as the principal energy reservoir of the body; however, the subcellular organization of the machinery regulating lipid trafficking and metabolism is poorly understood. Mobilization of stored triglyceride is thought be controlled by interactions among intracellular lipases and proteins that coat lipid storage droplets. A major limitation of previous studies of hormone-mediated lipolysis, however, is the use of cultured model adipocytes whose three-dimensional architectures do not resemble those in real adipose tissue. To address this limitation, we investigated the intracellular targeting of perilipin, a major lipid coat protein, and hormone-sensitive lipase in three preparations that exhibit more appropriate morphologies: 3T3-L1 adipocytes grown in three-dimensional matrix, dissociated mature adipocytes from mouse adipose tissue, and adipocytes within intact fat pads. High resolution imaging of native and fluorescently tagged proteins indicate that: 1) perilipin preferentially targets a special class of peripheral lipid storage droplets, but not the major or central lipid storage droplets, 2) the peripheral droplets are the sites of attack by hormone-sensitive lipase, and 3) perilipin and hormone-sensitive lipase are continuously colocalized following lipolytic activation. These results indicate that in white adipose tissue, lipolysis takes place in a specialized subcellular domain that is distinct from the major lipid storage site and is defined by perilipin.  相似文献   

17.
To explore regional differences in triglyceride retention in white adipose tissues of growing male rats, the mass of adipocytes from epididymal, retroperitoneal, inguinal, and mesenteric tissues were followed with time. In order to attempt to explain regional differences, adipose tissue metabolism was studied in vivo and in vitro. (U-14 C) oleic acid in sesame oil was given by gastric gavage to conscious male and female rats, and accumulation and half-life of radioactivity measured. Lipoprotein lipase activity and lipolysis were studied in vitro. Adipocyte triglyceride mass increased linearly in all the depots during 4 months of observation. The increase in mass was more pronounced in retroperitoneal (0.31 μg) and epididymal (0.30 μg) than in mesenteric (0.11 μg) or inguinal (0.05 μg) adipocytes. In the fed state label from (U-14C) oleic acid first increased with time in liver, muscle, and adipose tissues. In the liver radioactivity peaked at 4 hours, and was not measurable in either liver or muscle after a time point between 24 hours to 1 week. In contrast label continued to increase in adipose tissues up to about 16 hours to 24 hours, suggesting transfer of label by recirculation from liver and muscle to adipose tissues. Thereafter the radioactivity decreased. When expressed per adipocyte uptake of label was not significantly different between white adipose tissues. The rate of decrease between 7 days and 4 months was, however, more rapid in mesenteric and inguinal than, particularly, epididymal, and, probably, retroperitoneal adipocytes. These results were partly parallel to in vitro data on lipoprotein lipase activity, which was not different between depots, and the rate of lipolysis, which was higher in mesenteric than other adipocytes. These results suggest that differences in weight increase of adipose tissue regions are due mainly to differences in the rate of mobilization of adipocyte triglycerides. When expressed per gram triglyceride, uptake and mobilization of label were clearly more rapid in mesenteric than other white adipose tissues. This is probably explained by a combination of a higher adipocyte density plus the metabolic characteristics of adipocytes in this depot. Since mesenteric adipose tissue is smaller than the other depots studied, the absolute contribution of this tissue to the energy supply of the body is probably not different from that of other adipose tissues, however. A large uptake and short half life was observed in interscapular adipose tissue. This region contains brown adipocytes, and the results therefore suggest that lipid uptake for thermogenic purposes is of a considerable magnitude. It was concluded that among white adipose tissues, the mesenteric tissue has a rapid turnover of triglyceride. This is probably due to a combination of a high density and specific metabolic characteristics of these adipocytes. Factors in the microenvironment of adipocytes probably contribute to the high turnover either directly, or by modification of cellular characteristics.  相似文献   

18.
Objective: The scavenger receptor CD36 facilitates the cellular uptake of long‐chain fatty acids. As CD36‐deficiency attenuates the development of high fat diet (HFD)‐induced obesity, the role of CD36‐deficiency in preadipocyte recruitment and adipocyte function was set out to characterize. Design and Methods: Fat cell size and number were determined in gonadal, visceral, and subcutaneous adipose tissue of CD36?/? and WT mice after 6 weeks on HFD. Basal lipolysis and insulin‐inhibited lipolysis were investigated in gonadal adipose tissue. Results: CD36?/? mice showed a reduction in adipocyte size in all fat pads. Gonadal adipose tissue also showed a lower total number of adipocytes because of a lower number of very small adipocytes (diameter <50 μm). This was accompanied by an increased pool of preadipocytes, which suggests that CD36‐deficiency reduces the capacity of preadipocytes to become adipocytes. Regarding lipolysis, in adipose tissue from CD36?/? mice, cAMP levels were increased and both basal and 8‐bromo‐cAMP stimulated lipolysis were higher. However, insulin‐mediated inhibition of lipolysis was more potent in CD36?/? mice. Conclusions: These results indicate that during fat depot expansion, CD36‐deficiency negatively affects preadipocyte recruitment and that in mature adipocytes, CD36‐deficiency is associated with increased basal lipolysis and insulin responsiveness.  相似文献   

19.
Lipolysis leads to the breakdown of stored triglycerides (TAG) to release free fatty acids (FFA) and glycerol which is utilized by energy expenditure pathways to generate energy. Therefore, a decrease in lipolysis augments fat accumulation in adipocytes which promotes weight gain. Conversely, if lipolysis is not complemented by energy expenditure, it leads to FFA induced insulin resistance and type-2 diabetes. Thus, lipolysis is under stringent physiological regulation, although the precise mechanism of the regulation is not known. Deletion of inositol hexakisphosphate kinase-1 (IP6K1), the major inositol pyrophosphate biosynthetic enzyme, protects mice from high fat diet (HFD) induced obesity and insulin resistance. IP6K1-KO mice are lean due to enhanced energy expenditure. Therefore, IP6K1 is a target in obesity and type-2 diabetes. However, the mechanism/s by which IP6K1 regulates adipose tissue lipid metabolism is yet to be understood. Here, we demonstrate that IP6K1-KO mice display enhanced basal lipolysis. IP6K1 modulates lipolysis via its interaction with the lipolytic regulator protein perilipin1 (PLIN1). Furthermore, phosphorylation of IP6K1 at a PKC/PKA motif modulates its interaction with PLIN1 and lipolysis. Thus, IP6K1 is a novel regulator of PLIN1 mediated lipolysis.  相似文献   

20.
脂肪组织甘油三酯水解酶参与脂肪分解调控   总被引:2,自引:0,他引:2  
Xu C  Xu GH 《生理科学进展》2008,39(1):10-14
循环中游离脂肪酸增高与肥胖、胰岛素抵抗和2型糖尿病密切相关,其主要来源于脂肪细胞内甘油三酯水解.调控脂肪分解的脂肪酶主要包括激素敏感脂肪酶(hormone-sensitive lipase,HSL)和最近发现的脂肪组织甘油三酯水解酶(adipose triglyceride lipase,ATGL),后者主要分布在脂肪组织,特异水解甘油三酯为甘油二酯,其转录水平受多种因素调控.CGI-58(属于α/β水解酶家族蛋白),可以活化ATGL,基础条件下该蛋白和脂滴包被蛋白(perilipin)紧密结合于脂滴表面,蛋白激酶A激活刺激脂肪分解时,CGI-58与perilipin分离,进而活化ATGL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号