首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
在真核生物细胞囊泡运输过程中的膜融合主要是由SNARE蛋白介导的, SNARE蛋白的结构高度保守。研究发现, 植物中的SNARE蛋白促进植物细胞板形成, 能与离子通道蛋白相互作用, 有利于植物的正常生长发育, 能提高植物的抗病性及参与植物的向重力性作用。应用基因组学和蛋白质组学技术结合细胞学水平上的分析方法有助于深入揭示植物SNARE蛋白家族成员的功能, 明确SNARE蛋白在信号转导途径中的作用, 阐明动植物免疫系统的区别和联系。  相似文献   

3.
植物SNARE蛋白的结构与功能   总被引:5,自引:0,他引:5  
在真核生物细胞囊泡运输过程中的膜融合主要是由SNARE蛋白介导的,SNARE蛋白的结构高度保守.研究发现,植物中的SNARE蛋白促进植物细胞板形成,能与离子通道蛋白相互作用,有利于植物的正常生长发育,能提高植物的抗病性及参与植物的向重力性作用.应用基因组学和蛋白质组学技术结合细胞学水平上的分析方法有助于深入揭示植物SNARE蛋白家族成员的功能,明确SNARE蛋白在信号转导途径中的作用,阐明动植物免疫系统的区别和联系.  相似文献   

4.
5.
SWEET蛋白家族研究进展   总被引:1,自引:0,他引:1  
SWEET是新发现的一类具有7次跨膜?-螺旋的糖运输蛋白,它们由2个重复的具有3次跨膜?-螺旋的MtN3 motif和一个起连接作用的跨膜?-螺旋组成.SWEET广泛存在于真核单细胞生物、高等植物以及动物中.它们在生殖发育、植物与微生物的相互作用、植物的逆境反应及衰老等许多方面起重要作用.最近的研究显示,原核生物中存在与真核生物SWEET类似的、只含有一个3次跨膜?-螺旋的蛋白,这些蛋白属于MtN3或PQ-Loop家族.从慢生根瘤菌中克隆的SWEET同源蛋白BjSemiSWEET1和已经鉴定的部分真核生物SWEET蛋白一样具有运输蔗糖的能力,这个结果与其他相关研究一起暗示真核生物7次跨膜?-螺旋的糖或氨基酸运输蛋白可能由原核生物中3次跨膜?-螺旋的小分子蛋白通过复制或横向基因转移融合进化而来,并且它们在行使功能时可能形成和其他许多膜转运蛋白相似的、具有12次跨膜结构的功能单位.对SWEET的研究将为揭示多种生命现象提供重要线索.  相似文献   

6.
植物多胺代谢途径研究进展   总被引:6,自引:0,他引:6  
多胺是一类小分子生物活性物质,广泛存在于生物体内,与植物的生长发育、衰老及抗逆性都有着密切的联系。目前,在植物中的多胺合成途径已经基本揭示,其生理作用在分子水平上逐步得到阐明。对多胺合成突变体和各种转基因植物的研究也使得人们更深入地了解了多胺以及其合成代谢相关酶在植物生长发育等生理过程中的重要作用。以下概述了植物多胺代谢途径,重点综述了代谢途径中各基因的功能及遗传操作的最新进展,并对将来的研究方向尤其是相关基因在植物抗逆境 (包括生物和非生物逆境) 基因工程方面的应用作了讨论。  相似文献   

7.

Key message

Results from various expansin related studies have demonstrated that expansins present an opportunity to improve various crops in many different aspects ranging from yield and fruit ripening to improved stress tolerance.

Abstract

The recent advances in expansin studies were reviewed. Besides producing the strength that is needed by the plants, cell walls define cell shape, cell size and cell function. Expansins are cell wall proteins which consist of four sub families; α-expansin, β-expansin, expansin-like A and expansin-like B. These proteins mediate cell wall loosening and they are present in all plants and in some microbial organisms and other organisms like snails. Decades after their initial discovery in cucumber, it is now clear that these small proteins have diverse biological roles in plants. Through their ability to enable the local sliding of wall polymers by reducing adhesion between adjacent wall polysaccharides and the part they play in cell wall remodeling after cytokinesis, it is now clear that expansins are required in almost all plant physiological development aspects from germination to fruiting. This is shown by the various reports from different studies using various molecular biology approaches such as gene achieve these many roles through their non-enzymatic wall loosening ability. This paper reviews and summarizes some of the reported functions of expansins and outlines the potential uses of expansins in crop improvement programs.
  相似文献   

8.
Due to the fact that most plants are immobile, a rapid response of physiological processes to changing environmental conditions is essential for their survival. Thus, in comparison to many other organisms, plants might need a more sophisticated tuning of water balance. Among others, this is reflected by the comparable large amount of aquaporin genes in plant genomes. So far, aquaporins were shown to be involved in many physiological processes like root water uptake, reproduction or photosynthesis. Their classification as simple water pores has changed according to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the corresponding physiological process could be achieved by regulation mechanisms. Concerning aquaporins these range from posttranslational modification, molecular trafficking to heteromerization of aquaporin isoforms. The aim of this review is to underline the function of the four plant aquaporin family subclasses with regard to the substrate specificity, regulation and physiological relevance.  相似文献   

9.
Plant thioredoxins are key actors in the oxidative stress response   总被引:7,自引:0,他引:7  
Thioredoxins are ubiquitous disulfide reductases that regulate the redox status of target proteins. Although plant thioredoxins display a striking diversity not found in other organisms, many of their physiological roles have yet to be determined. Based on recent publications investigating thioredoxin targets and genetically modified plants, thioredoxins appear to play a fundamental role in plant tolerance of oxidative stress. They are involved in oxidative damage avoidance by supplying reducing power to reductases detoxifying lipid hydroperoxides or repairing oxidized proteins. Furthermore, other lines of evidence indicate that thioredoxins could act as regulators of scavenging mechanisms and as components of signalling pathways in the plant antioxidant network.  相似文献   

10.
Functional aquaporin diversity in plants   总被引:1,自引:0,他引:1  
Due to the fact that most plants are immobile, a rapid response of physiological processes to changing environmental conditions is essential for their survival. Thus, in comparison to many other organisms, plants might need a more sophisticated tuning of water balance. Among others, this is reflected by the comparable large amount of aquaporin genes in plant genomes. So far, aquaporins were shown to be involved in many physiological processes like root water uptake, reproduction or photosynthesis. Their classification as simple water pores has changed according to their molecular function into channels permeable for water, small solutes and/or gases. An adjustment of the corresponding physiological process could be achieved by regulation mechanisms. Concerning aquaporins these range from posttranslational modification, molecular trafficking to heteromerization of aquaporin isoforms. The aim of this review is to underline the function of the four plant aquaporin family subclasses with regard to the substrate specificity, regulation and physiological relevance.  相似文献   

11.
12.
BACKGROUND: Transglutaminases have been studied in plants since 1987 in investigations aimed at interpreting some of the molecular mechanisms by which polyamines affect growth and differentiation. Transglutaminases are a widely distributed enzyme family catalysing a myriad of biological reactions in animals. In plants, the post-translational modification of proteins by polyamines forming inter- or intra-molecular cross-links has been the main transglutaminase reaction studied. CHARACTERISTICS OF PLANT TRANSGLUTAMINASES: The few plant transglutaminases sequenced so far have little sequence homology with the best-known animal enzymes, except for the catalytic triad; however, they share a possible structural homology. Proofs of their catalytic activity are: (a) their ability to produce glutamyl-polyamine derivatives; (b) their recognition by animal transglutaminase antibodies; and (c) biochemical features such as calcium-dependency, etc. However, many of their fundamental biochemical and physiological properties still remain elusive. TRANSGLUTAMINASE ACTIVITY IS UBIQUITOUS: It has been detected in algae and in angiosperms in different organs and sub-cellular compartments, chloroplasts being the best-studied organelles. POSSIBLE ROLES: Possible roles concern the structural modification of specific protein substrates. In chloroplasts, transglutaminases appear to stabilize the photosynthetic complexes and Rubisco, being regulated by light and other factors, and possibly exerting a positive effect on photosynthesis and photo-protection. In the cytosol, they modify cytoskeletal proteins. Preliminary reports suggest an involvement in the cell wall construction/organization. Other roles appear to be related to fertilization, abiotic and biotic stresses, senescence and programmed cell death, including the hypersensitive reaction. CONCLUSIONS: The widespread occurrence of transglutaminases activity in all organs and cell compartments studied suggests a relevance for their still incompletely defined physiological roles. At present, it is not possible to classify this enzyme family in plants owing to the scarcity of information on genes encoding them.  相似文献   

13.
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases belonging to the metzincin clan. MMPs have been characterized in detail in mammals, and they have been shown to play key roles in many physiological and pathological processes. Plant MMP-like proteases exist, but relatively few have been characterized. It has been speculated that plant MMPs are involved in remodeling of the plant extracellular matrix during growth, development and stress response. However, the precise functions and physiological substrates in higher plants remain to be determined. In this brief overview, we summarize the current knowledge of MMPs in higher plants and algae.  相似文献   

14.
Glucosylceramides are membrane lipids in most eukaryotic organisms and in a few bacteria. The physiological functions of these glycolipids have only been documented in mammalian cells, whereas very little information is available of their roles in plants, fungi, and bacteria. In an attempt to establish appropriate experimental systems to study glucosylceramide functions in these organisms, we performed a systematic functional analysis of a glycosyltransferase gene family with members of animal, plant, fungal, and bacterial origin. Deletion of such putative glycosyltransferase genes in Candida albicans and Pichia pastoris resulted in the complete loss of glucosylceramides. When the corresponding knock-out strains were used as host cells for homologous or heterologous expression of candidate glycosyltransferase genes, five novel glucosylceramide synthase (UDP-glucose:ceramide glucosyltransferase) genes were identified from the plant Gossypium arboreum (cotton), the nematode Caenorhabditis elegans, and the fungi Magnaporthe grisea, Candida albicans, and P. pastoris. The glycosyltransferase gene expressions led to the biosynthesis of different molecular species of glucosylceramides that contained either C18 or very long chain fatty acids. The latter are usually channeled exclusively into inositol-containing sphingolipids known from Saccharomyces cerevisiae and other yeasts. Implications for the biosynthesis, transport, and function of sphingolipids will be discussed.  相似文献   

15.
Subtilisin‐like proteases (or subtilases) are a very diverse family of serine peptidases present in many organisms, but mostly in plants. With a broad spectrum of biological functions, ranging from protein turnover and plant development to interactions with the environment, subtilases have been gaining increasing attention with regard to their involvement in plant defence responses against the most diverse pathogens. Over the last 5 years, the number of published studies associating plant subtilases with pathogen resistance and plant immunity has increased tremendously. In addition, the observation of subtilases and serine protease inhibitors secreted by pathogens has also gained prominence. In this review, we focus on the active participation of subtilases in the interactions established by plants with the environment, highlighting their role in plant–pathogen communication.  相似文献   

16.
The Bcl-2 family in autoimmune and degenerative disorders   总被引:1,自引:0,他引:1  
Members of the Bcl-2 family are essential regulators of programmed cell death and thus play a major role in the development and function of many tissues. The balance between pro-survival and pro-apoptotic members of the family decides whether a cell will live or die. This mechanism allows organisms to get rid of cells that are no longer needed or have become dangerous. Deregulation of apoptosis is a major contributing factor in the development of many diseases. A deeper understanding of how the Bcl-2 family proteins orchestrate death in normal and pathologic conditions is thus relevant not only for disease etiology, but also to try to prevent these various disorders. Experiments with transgenic and gene-ablated mice have helped elucidate the function of the different members of the Bcl-2 family and their physiological roles. The present review highlights the role of Bcl-2 family members in autoimmune and degenerative disorders, with a particular focus on the mouse models that have been used to study their function.  相似文献   

17.
Epoxide hydrolases: their roles and interactions with lipid metabolism   总被引:12,自引:0,他引:12  
The epoxide hydrolases (EHs) are enzymes present in all living organisms, which transform epoxide containing lipids by the addition of water. In plants and animals, many of these lipid substrates have potent biologically activities, such as host defenses, control of development, regulation of inflammation and blood pressure. Thus the EHs have important and diverse biological roles with profound effects on the physiological state of the host organisms. Currently, seven distinct epoxide hydrolase sub-types are recognized in higher organisms. These include the plant soluble EHs, the mammalian soluble epoxide hydrolase, the hepoxilin hydrolase, leukotriene A4 hydrolase, the microsomal epoxide hydrolase, and the insect juvenile hormone epoxide hydrolase. While our understanding of these enzymes has progressed at different rates, here we discuss the current state of knowledge for each of these enzymes, along with a distillation of our current understanding of their endogenous roles. By reviewing the entire enzyme class together, both commonalities and discrepancies in our understanding are highlighted and important directions for future research pertaining to these enzymes are indicated.  相似文献   

18.
Phytochrome, a family of photoreceptors with multiple physiological roles   总被引:17,自引:10,他引:7  
Abstract. Photoperception by phytochrome is crucially important at many stages of the plant life cycle in allowing adaptation to a changing light environment. Phytochrome is encoded by a family of genes subject to differential expression in response to environmental and developmental factors. Multiple forms of phytochrome exist with, in some cases, identifiably different spectrophotometric, biochemical and physiological characteristics. This article reviews the regulation of development by phytochrome and discusses evidence from physiological studies of wild type, mutant and transgenic plants consistent with the proposal that different members of the phytochrome family have different photosensory roles. We speculate briefly on the possible evolutionary relationship between the different photosensory roles, and suggest approaches towards further elucidation of the nature of phytochrome-mediated photoperception and adaptation to the natural light environment.  相似文献   

19.
Nudix hydrolases are widely distributed in all kingdoms of life and have the potential to hydrolyze a wide range of organic pyrophosphates, including nucleoside di- and triphosphates, nucleotide coenzymes, nucleotide sugars, and RNA caps. However, except for E. coli MutT and its orthologs in other organisms that sanitize oxidized nucleotides to prevent DNA and RNA mutations, the functions of Nudix hydrolases had largely remained unclear until recently, because many members of this enzyme family exhibited broad substrate specificities. There is now increasing evidence to show that their functions extend into many aspects of the regulation of cellular responses. This review summarizes current knowledge on the molecular and enzymatic properties as well as physiological functions of Arabidopsis Nudix hydrolases. The information presented here may provide novel insights into the physiological roles of these enzymes in not only plant species, but also other organisms.  相似文献   

20.
Plant life strategies differ radically from those of most animals. Plants are not motile, and can only face stress by developing appropriate physiological responses. In addition, many developmental decisions take place during post-embryonic life in plants, whereas vertebrate and invertebrate development is nearly complete by the time of birth. For instance, while the germ line is typically set aside early during embryogenesis in animals, plants produce gametes from stem cell populations that were previously used for the vegetative growth of shoots. Nevertheless, plants and animals have similar nuclear organization, chromatin constitution and gene content, which raises the question as to whether or not fundamental differences in the use of genetic information underlie their distinct life strategies. More specifically, we would like to know if chromatin and the epigenetically defined, heritable cell fates that it can confer play comparable roles in plants and animals. Here we review our current knowledge on chromatin-mediated epigenetic processes in plants. Based on available evidence, we argue that epigenetic regulation of gene expression plays a relatively minor role in plants compared to mammals. Conversely, plants appear to be more prone than other multicellular organisms to the induction of chromatin-based, epigenetically modified gene activity states that can be transmitted over many generations. These so-called "epimutations" may therefore represent a significant proportion of the natural genetic variation seen in plants. In humans, epimutations are frequently observed in cancers, and given their metastable nature, they could also play an important role in familial disorders that do not demonstrate clear Mendelian inheritance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号