首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of interleukin-1 beta (IL-1 beta), IL-6, and tumor necrosis factor alpha (TNF-alpha) by fresh peripheral blood mononuclear cells was evaluated after exposure to human immunodeficiency virus (HIV) or purified recombinant HIV-1 envelope glycoprotein (rgp120). To exclude the role of contaminating endotoxin in this study, all media were subjected to ultrafiltration and reagents contained less than 25 pg of endotoxin per ml by Limulus assay. Under endotoxin-free conditions, no increases in IL-1 beta, IL-6, or TNF-alpha mRNA or protein were detectable in cell cultures exposed to HIV-1, HIV-2, or rgp120 (0.1 to 10 micrograms/ml), as compared with cytokine levels in mock-exposed cultures. However, concentrations of endotoxin (lipopolysaccharide) as low as 0.5 ng/ml induced significant production of mRNA and protein for these three cytokines. Preincubation of mononuclear cells with "shake" HIV-1 preparations and also mock-infected shake preparations prior to lipopolysaccharide stimulation resulted in a two- to threefold increase in IL-1 beta and TNF-alpha production. This priming effect was not observed with rgp120 (0.1 to 10 micrograms/ml) or standard HIV-1 or mock-infected supernatants, suggesting the presence of biologically active material independent of virus in the shake preparations. Our studies indicate that, in the absence of endotoxin, HIV-1, HIV-2, and HIV gp120 do not induce production of IL-1 beta, IL-6, or TNF-alpha by peripheral blood mononuclear cells.  相似文献   

2.
3.
Macrophages respond to virus infections by rapidly secreting proinflammatory cytokines, which play an important role in the first line of defense. Tumor necrosis factor alpha (TNF-alpha) is one of the major macrophage-produced cytokines. In this study we have investigated the virus-cell interactions responsible for induction of TNF-alpha expression in herpes simplex virus (HSV)-infected macrophages. Both HSV type 1 (HSV-1) and HSV-2 induced TNF-alpha expression in macrophages activated with gamma interferon (IFN-gamma). This induction was to some extent sensitive to UV treatment of the virus. Virus particles unable to enter the cells displayed reduced capacity to stimulate TNF-alpha expression but retained a significant portion which was abolished by HSV-specific antibodies. Recombinant HSV-1 glycoprotein D was able to trigger TNF-alpha secretion in concert with IFN-gamma. Sugar moieties of HSV glycoproteins have been reported to be involved in induction of IFN-alpha but did not contribute to TNF-alpha expression in macrophages. Moreover, the entry-dependent portion of the TNF-alpha induction was investigated with HSV-1 mutants and found to be independent of the tegument proteins VP16 and UL13 and partly dependent on nuclear translocation of the viral DNA. Finally, we found that macrophages expressing an inactive mutant of the double-stranded RNA (dsRNA)-activated protein kinase (PKR) produced less TNF-alpha in response to infectious HSV infection than the empty-vector control cell line but displayed the same responsiveness to UV-inactivated virus. These results indicate that HSV induces TNF-alpha expression in macrophages through mechanisms involving (i) viral glycoproteins, (ii) early postentry events occurring prior to nuclear translocation of viral DNA, and (iii) viral dsRNA-PKR.  相似文献   

4.
Two key features of atherosclerotic plaques that precipitate acute atherothrombotic vascular occlusion ("vulnerable plaques") are abundant inflammatory mediators and macrophages with excess unesterified, or "free," cholesterol (FC). Herein we show that FC accumulation in macrophages leads to the induction and secretion of two inflammatory cytokines, tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6). The increases in TNF-alpha and IL-6 mRNA and protein were mediated by FC-induced activation of the IkappaB kinase/NF-kappaB pathway as well as activation of MKK3/p38, Erk1/2, and JNK1/2 mitogen-activated protein kinases (MAPK). Activation of IkappaB kinase and JNK1/2 was needed for the induction of both cytokines. However, MKK3/p38 signaling was specifically involved in TNF-alpha induction, and Erk1/2 signaling was required for IL-6. Most interestingly, activation of all of the signaling pathways and induction of both cytokines required cholesterol trafficking to the endoplasmic reticulum (ER). The CHOP branch of the unfolded protein response, an ER stress pathway, was required for Erk1/2 activation and IL-6 induction. In contrast, one or more other ER-related pathways were responsible for activation of p38, JNK1/2, and IkappaB kinase/NF-kappaB and for the induction of TNF-alpha. These data suggest a novel scenario in which cytokines are induced in macrophages by endogenous cellular events triggered by excess ER cholesterol rather than by exogenous immune cell mediators. Moreover, this model may help explain the relationship between FC accumulation and inflammation in vulnerable plaques.  相似文献   

5.
Rat liver macrophages (Kupffer cells) secrete tumor necrosis factor-alpha (cachectin) after exposure to Newcastle disease virus or bacterial endotoxin. Macrophages treated with endotoxin become refractory and fail to release tumor necrosis factor-alpha to a secondary challenge with endotoxin. The acquisition of the refractory state is dose-dependent, requires the continuous presence of endotoxin for a minimum of 8 h, is transient, and reversible. Endotoxin, however, renders Kupffer cells unresponsive only to itself. When endotoxin-refractory macrophages are activated by Newcastle disease virus, they still secrete tumor necrosis factor-alpha in amounts expected with this stimulus. Immunoprecipitation studies show that the precursor of tumor necrosis factor-alpha is found only in lysates of endotoxin-sensitive, but not in refractory macrophages, thus arguing against a post-translational regulatory process. Whereas prostaglandin E2 inhibits the production of tumor necrosis factor-alpha in response to endotoxin and viruses, it does not appear to mediate the refractory state.  相似文献   

6.
Mitogen-activated protein (MAP) kinases play a pivotal role in the macrophages in the production of proinflammatory cytokines triggered by lipopolysaccharides. However, their function in the responses of macrophages to Gram-positive bacteria is poorly understood. Even less is known about the attenuation of MAP kinase signaling in macrophages exposed to Gram-positive bacteria. In the present study, we have investigated the regulation of MAP kinases and the role of MAP kinase phosphatase (MKP)-1 in the production of pro-inflammatory cytokines using murine RAW264.7 and primary peritoneal macrophages after peptidoglycan stimulation. Treatment of macrophages with peptidoglycan resulted in a transient activation of JNK, p38, and extracellular signal-regulated kinase. Most interestingly, MKP-1 expression was potently induced by peptidoglycan, and this induction was concurrent with MAP kinase dephosphorylation. Triptolide, a diterpenoid triepoxide, potently blocked the induction of MKP-1 by peptidoglycan and prolonged the activation of JNK and p38. Overexpression of MKP-1 substantially attenuated the production of tumor necrosis factor (TNF)-alpha induced by peptidoglycan, whereas knockdown of MKP-1 by small interfering RNA substantially increased the production of both TNF-alpha and interleukin-1 beta. Finally, we found that in primary murine peritoneal macrophages, MKP-1 induction following peptidoglycan stimulation also coincided with inactivation of JNK and p38. Blockade of MKP-1 induction resulted in a sustained activation of both JNK and p38 in primary macrophages. Our results reveal that MKP-1 critically regulates the expression of TNF-alpha and interleukin-1 beta in RAW264.7 cells and further suggest a central role for this phosphatase in controlling the inflammatory responses of primary macrophages to Gram-positive bacterial infection.  相似文献   

7.
Cytokine-mediated inflammatory hyperalgesia limited by interleukin-13   总被引:1,自引:0,他引:1  
The effect of interleukin-13 (IL-13) on hyperalgesic responses to intraplantar (i.pl.) injection of carrageenin, E. coli endotoxin (LPS), bradykinin, tumour necrosis factor a (TNF-alpha), interleukin-1 beta (IL-1 beta), interleukin-8 (IL-8) and prostaglandin E(2) (PGE(2)) was investigated in a model of mechanical hyperalgesia in rats. Also, the cellular source of the IL-13 was investigated. IL-13, administered 30 min before the stimulus, inhibited responses to carrageenin, LPS, bradykinin, and TNF-alpha, but not responses to IL-1 beta, IL-8 and PGE2. IL-13, administered 2 hours before the injection of IL-1b, did not affect the response to IL-1b, whereas IL-13, administered 12 hours or 12 + 2 hours before the IL-1 beta, inhibited the hyperalgesia (- 35%, - 77%, respectively). In murine peritoneal macrophages, IL-13 administered 2 hours before stimulation with LPS, inhibited the production of IL-1 beta (- 67%) and PGE(2) (- 56%). IL-13 administered 12 hours before stimulation with LPS inhibited LPS-stimulated PGE(2) but not IL-1 beta. An anti-IL-13 serum potentiated responses to carrageenin, LPS, bradykinin and TNF-alpha (but not IL-1 beta and IL-8), as well as responses to bradykinin in rats depleted of mast cells with compound 40/80, but not in athymic rats. These data suggest that IL-13, released by lymphocytes, limits inflammatory hyperalgesia by the inhibition of the production TNF-alpha, IL-1 beta, IL-8 and PGs.  相似文献   

8.
9.
Highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 causes severe, often fatal pneumonia in humans. The pathogenesis of HPAIV H5N1 infection is not completely understood, although the alveolar macrophage (AM) is thought to play an important role. HPAIV H5N1 infection of macrophages cultured from monocytes leads to high percentages of infection accompanied by virus production and an excessive pro-inflammatory immune response. However, macrophages cultured from monocytes are different from AM, both in phenotype and in response to seasonal influenza virus infection. Consequently, it remains unclear whether the results of studies with macrophages cultured from monocytes are valid for AM. Therefore we infected AM and for comparison macrophages cultured from monocytes with seasonal H3N2 virus, HPAIV H5N1 or pandemic H1N1 virus, and determined the percentage of cells infected, virus production and induction of TNF-alpha, a pro-inflammatory cytokine. In vitro HPAIV H5N1 infection of AM compared to that of macrophages cultured from monocytes resulted in a lower percentage of infected cells (up to 25% vs up to 84%), lower virus production and lower TNF-alpha induction. In vitro infection of AM with H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) than with HPAIV H5N1, while virus production and TNF-alpha induction were comparable. In conclusion, this study reveals that macrophages cultured from monocytes are not a good model to study the interaction between AM and these influenza virus strains. Furthermore, the interaction between HPAIV H5N1 and AM could contribute to the pathogenicity of this virus in humans, due to the relative high percentage of infected cells rather than virus production or an excessive TNF-alpha induction.  相似文献   

10.
We investigated the effect of hyperbaric oxygen treatment (HBO) on cytokine induction after hemorrhage, because hypoxia induces cytokines in vitro. Chronically cannulated conscious rats were subjected to 40 ml/kg of hemorrhage and resuscitated with the shed blood and twice the volume of saline either under room air (room air group) or under 100% oxygen at 3 atmospheres absolute (hyperbaric group). Rats exposed to HBO with no hemorrhage served as controls. Time course changes in plasma endotoxin level, arterial ketone body ratio (AKBR), serum tumor necrosis factor (TNF), interleukin-6 (IL-6), and their hepatic mRNA were detected in the three groups. Plasma endotoxin levels increased significantly after hemorrhage, and there were no significant differences between the room air group and the hyperbaric group. In the room air group, AKBR dropped rapidly after hemorrhage and became minimal at hour 1, which was associated with significant increases in TNF-alpha and IL-6 at both mRNA and circulating levels. HBO significantly attenuated decreases in AKBR after hemorrhage with a significant reduction of mortality and cytokine induction. These results indicate that HBO attenuated the cytokine induction after hemorrhage by improving liver ischemia, and they suggest that tissue hypoxia may be responsible, at least in part, for cytokine induction after massive hemorrhage.  相似文献   

11.
12.
The concentration of tumor necrosis factor-alpha (TNF-alpha) and interleukin-4 (IL-4) in the blood sera of chronic hepatitis patients was, on the average, reliably higher than in the control group. A more pronounced increase in the concentration of TNF-alpha in the blood sera was observed in patients with chronic hepatitis of viral etiology in comparison with toxic hepatitis. The pronounced cytokine response of type Th2, manifested by the excessive production of IL-4, was typical for hepatitis B virus and hepatitis C virus infections, but not characteristic of hepatitis D virus infection. The replication activity of hepatotropic viruses induced a powerful cytokine response. In the presence of active virus replication in patients with chronic hepatitis B the levels of both TNF-alpha and IL-4 in their blood sera proved to be reliably higher than in patients with hepatitis B virus in the interactive phase.  相似文献   

13.
Type III interferons (IFNs) (interleukin-28/29 or lambda interferon [IFN-lambda]) are cytokines with IFN-like activities. Here we show that several classes of viruses induce expression of IFN-lambda1 and -lambda2/3 in similar patterns. The IFN-lambdas were-unlike alpha/beta interferon (IFN-alpha/beta)-induced directly by stimulation with IFN-alpha or -lambda, thus identifying type III IFNs as IFN-stimulated genes. In vitro assays revealed that IFN-lambdas have appreciable antiviral activity against encephalomyocarditis virus (EMCV) but limited activity against herpes simplex virus type 2 (HSV-2), whereas IFN-alpha potently restricted both viruses. Using three murine models for generalized virus infections, we found that while recombinant IFN-alpha reduced the viral load after infection with EMCV, lymphocytic choriomeningitis virus (LCMV), and HSV-2, treatment with recombinant IFN-lambda in vivo did not affect viral load after infection with EMCV or LCMV but did reduce the hepatic viral titer of HSV-2. In a model for a localized HSV-2 infection, we further found that IFN-lambda completely blocked virus replication in the vaginal mucosa and totally prevented development of disease, in contrast to IFN-alpha, which had a more modest antiviral activity. Finally, pretreatment with IFN-lambda enhanced the levels of IFN-gamma in serum after HSV-2 infection. Thus, type III IFNs are expressed in response to most viruses and display potent antiviral activity in vivo against select viruses. The discrepancy between the observed antiviral activity in vitro and in vivo may suggest that IFN-lambda exerts a significant portion of its antiviral activity in vivo via stimulation of the immune system rather than through induction of the antiviral state.  相似文献   

14.
In human orthotopic liver transplantation (LTX) intraoperative elevations of TNF-alpha (> 100 pg/ml) and IL-6 (>800 pg/ml) have been found to correlate with early post-operative rejections and infections respectively. In this study the possible mechanism responsible for the induction of these cytokines has been investigated during liver allografting in 38 recipients. Intraoperative elevations of TNF-alpha (> 100 pg/ml) were detected in the majority of pre-transplant endotoxin positive recipients (8/12, > 10 endotoxin units/ml), the patients turning endotoxin positive until the end of grafting (3/5), and in a subgroup (6/21 patients), apparently endotoxin negative for the whole operation. Therefore endotoxin (ET) seems to stimulate release of TNF-alpha in approximately 50% of the patients, whereas sensitized Kupffer graft cells or immediate allograft reactivity of the host are likely to account for the remaining TNF-alpha positive cases. Elevations of IL-6 > 800 pg/ml) were found in approximately 50% of the TNF-alpha positive cases, indicating partially independent regulatory pathways for IL-6 induction in the TNF-alpha negative patients. In agreement with a previous study, 11/13 (85%) of the intraoperative TNF-alpha positive recipients rejected their grafts within the first 10 days post-operatively. These data demonstrate that ET/infection associated as well as ET independent/reperfusion associated intraoperative TNF-alpha elevations, promote the initiation of allograft rejection in human liver transplantation. The transient and low endotoxaemia caused by the liver grafting procedure performed without veno-venous bypass seems to be of minor importance in the intraoperative induction of TNF-alpha.  相似文献   

15.
LPS is known to be a potent activator of macrophages and induces the production of TNF-alpha and IL-1. However, the signaling events and regulatory mechanisms required for the activation of macrophages by LPS have not been resolved precisely. We show that LPS modulates its own response in macrophages. Proteose peptone-induced murine peritoneal macrophages (P-PEM) produce significant amount of TNF-alpha and IL-1 after stimulation with LPS. However, preexposure of macrophages to low doses (less than 1 ng/ml) of LPS renders them refractory to stimulation by a second round of LPS, as evaluated by production of TNF-alpha. The loss of sensitivity to a second round of LPS was selective for TNF-alpha production as the LPS-primed macrophages retained the ability to produce IL-1. Northern blot analysis was performed with total RNA obtained from control and LPS- (1 ng/ml) primed P-PEM after 3-h stimulation with a second round of LPS. The expression of TNF-alpha mRNA was inhibited in LPS-primed P-PEM, whereas the expression of IL-1 beta mRNA was the same in control and LPS-primed P-PEM, consistent with the data of biologic activities of these two cytokines. Zymosan-induced TNF-alpha production was the same in control and LPS-primed macrophages, indicating that not all of the pathways required for TNF-alpha production were affected by LPS priming. Monokines such as human (h) rIL-1 alpha, hrTNF-alpha, hrIL-6, and murine rIFN-beta could not substitute for the action of low doses of LPS, and addition of indomethacin could not restore TNF-alpha production. These results suggest that exposure of macrophages to low doses of LPS suppresses the production of TNF-alpha, but not of IL-1, by inhibiting the expression of mRNA through a noncyclooxygenase-dependent mechanism. Thus, LPS-induced production of TNF-alpha and IL-1 in macrophages are differently regulated.  相似文献   

16.
The pro-inflammatory cytokines IL-6 and TNF-alpha have been implicated in the pathogenesis of otitis media with effusion (OME). A disease where goblet cells proliferate in a modified respiratory epithelium, leading to the accumulation of a mucin-rich effusion in the middle ear cleft. The MUC5AC and MUC5B mucin gene products have been identified as components of these effusions. To determine the effect of IL-6 and TNF-alpha on MUC5AC and MUC5B secretion we have used HT29-MTX goblet cells, which secrete both types of mucins. MUC5AC and MUC5B mucin secretion was measured by an enzyme-linked immunosorbent assay (ELISA) using a specific monoclonal antibody NCL-HGM-45M1 and polyclonal antiserum TEPA, respectively. Time response (0-72 hours) and dose response (1.5-150 ng/ml) studies were carried out. IL-6 and TNF-alpha stimulated MUC5AC and MUC5B mucin secretion in a time dependent manner, both in pre-confluent and post-confluent cells. IL-6 (15 ng/ml and 20 ng/ml) produced a low and prolonged stimulation of mucin secretion that persisted for 72 hours, with peak response at 24 hours after induction. The IL-6-mediated mucin secretion at 24 hours was concentration-dependent, with a maximal effect at 15 ng/ml. TNF-alpha (20 ng/ml) induced rapid stimulation of mucin secretion within the first 24 hours, with peak response at 7 hours after induction. IL-6 and TNF-alpha exposure significantly increased MUC5AC secretion, but not MUC5B secretion. Maximal levels of cytokine-induced mucin secretion were detected in pre-confluent cells that showed one and a half- and two-fold increases in MUC5AC secretion after IL-6 and TNF-alpha stimulation, respectively, in comparison with post-confluent cells. The results presented here suggest that IL-6 and TNF-alpha generate a differential up-regulation of mucin secretion and thus contribute to the expression of mucin genes in inflammatory responses.  相似文献   

17.
The cholera toxin B chain (CTB) has been reported to suppress T cell-dependent autoimmune diseases and to potentiate tolerance of the adaptive immune system. We have analyzed the effects of CTB on macrophages in vitro and have found that preincubation with CTB (10 microg/ml) suppresses the proinflammatory reaction to LPS challenge, as demonstrated by suppressed production of TNF-alpha, IL-6, IL-12(p70), and NO (p < 0.01) in cells of macrophage lines. Pre-exposure to CTB also suppresses LPS-induced TNF-alpha and IL-12(p70) formation in human PBMC. Both native and recombinant CTB exhibited suppressive activity, which was shared by intact cholera toxin. In cells of the human monocyte line Mono Mac 6, exposure to CTB failed to suppress the production of IL-10 in response to LPS. Control experiments excluded a role of possible contamination of CTB by endotoxin or intact cholera toxin. The suppression of TNF-alpha production occurred at the level of mRNA formation. Tolerance induction by CTB was dose and time dependent. The suppression of TNF-alpha and IL-6 production could be counteracted by the addition of Abs to IL-10 and TGF-beta. IFN-gamma also antagonized the actions of CTB on macrophages. In contrast to desensitization by low doses of LPS, tolerance induction by CTB occurred silently, i.e., in the absence of a measurable proinflammatory response. These findings identify immune-deviating properties of CTB at the level of innate immune cells and may be relevant to the use of CTB in modulating immune-mediated diseases.  相似文献   

18.
The cellular basis for the variation in induction of monocyte procoagulant activity (PCA) by murine hepatitis virus strain 3 (MHV-3) was examined using a set of recombinant inbred strains of mice derived from the resistant (A/J) and susceptible C57B1/6J (B) progenitors. Induction of PCA by MHV-3 required live virus and host protein and RNA synthesis. Absolute restriction for induction of PCA was observed at the level of the macrophage. Peritoneal macrophages from resistant parental A/J and RI strains (AXB5) could not be induced to express PCA when stimulated by MHV-3 alone or in the presence of lymphocytes from susceptible and H-2 compatible RI mice (AXB3) although they did respond to endotoxin (LPS). In contrast, macrophages from both susceptible (AXB3) and semisusceptible (AXB1) RI strains of mice expressed a similar increase in PCA after stimulation with MHV-3 in the absence of lymphocytes. The levels of PCA expressed by macrophages in the presence of Thy-1.2+ lymphocytes correlated with susceptibility to disease. Thy-1.2+ lymphocytes from susceptible RI AXB3 mice could induce levels of PCA in macrophages from semisusceptible RI AXB1 mice equivalent to that seen in cultures of macrophages and lymphocytes from susceptible mice. Further subfractionation of Thy-1.2+ cells demonstrated that L3T4+ cells instructed macrophages to produce PCA. Thy-1.2+ cells from MHV-3 immunized resistant AXB5 mice, but not from non-immunized mice, were able to suppress induction of PCA. This suppressor cell activity could be detected 4 days after immunization, reaching maximal activity at day 7 with significant suppression even at 28 days. The PCA was shown to have direct prothrombin cleaving activity (prothrombinase) by ELISA and immunofluorescence staining using the mAb 3D4.3. These results demonstrate that induction of a unique PCA (prothrombinase) is restricted at the level of the macrophage and define a regulatory role for T lymphocytes in its induction.  相似文献   

19.
The pattern recognition receptor Toll-like receptor 2 (TLR2) has been implicated in the response to several human viruses, including herpes simplex viruses (types 1 and 2) and cytomegalovirus. We demonstrated that varicella-zoster virus (VZV) activates inflammatory cytokine responses via TLR2. VZV specifically induced interleukin-6 (IL-6) in human monocytes via TLR2-dependent activation of NF-kappaB, and small interfering RNA designed to suppress TLR2 mRNA reduced the IL-6 response to VZV in human monocyte-derived macrophages. Unlike other herpesviruses, the cytokine response to VZV was species specific. VZV did not induce cytokines in murine embryonic fibroblasts or in a mouse cell line, although VZV did activate NF-kappaB in a human cell line expressing a murine TLR2 construct. Together, these results suggest that TLR2 may play a role in the inflammatory response to VZV infection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号