首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We analyzed the genetic structure and gene products of the newly isolated avian sarcoma virus UR1, which recently has been shown to be replication defective and to contain no sequences homologous to the src gene of Rous sarcoma virus. The sizes of the genomic RNAs of UR1 and its associated helper virus, UR1AV, were determined to be 29S and 35S (5.9 and 8.5 kilobases), respectively, by gel electrophoresis and sucrose gradient sedimentation. RNase T1 oligonucleotide mapping of purified viral RNAs indicated that UR1 RNA contains eight unique oligonucleotides in the middle of the genome and shares four 5'-terminal and three 3'-terminal oligonucleotides with UR1AV RNA. The unique sequences of UR1 and Fujinami sarcoma virus were found to be closely related to each other by molecular hybridization of UR1 RNA with DNA complementary to the unique sequence of Fujinami sarcoma virus RNA, but minor differences were found by oligonucleotides fingerprinting. In the regions flanking the unique sequences, UR1 and Fujinami sarcoma viral RNAs contain distinct oligonucleotides, which are shared with oligonucleotides of the respective helper viral RNAs. Cell transformed with UR1 produce a single 29S RNA species which contains a UR1 unique sequence; this species is most likely the mRNA coding for the transforming protein. In UR1-transformed cells, a phosphoprotein fo 150,000 daltons (p150) was detected by immunoprecipitation with antiserum against gag proteins. p150 was associated with a protein kinase activity that was capable of phosphorylating p150 itself, immunoglobulin G of antiserum, and a soluble substrate, alpha-casein. This enzyme transferred phosphate exclusively to tyrosine residues of substrates in vitro, but p 150 labeled in vivo with 32P contained both phosphoserine and phosphotyrosine. The in vitro kinase reaction was not affected by the presence of cyclic AMP or cyclic GMP and strongly preferred Mn2+ over Mg2+. Thus, the properties of UR1 protein are almost identical to those of Fujinami sarcoma virus protein.  相似文献   

3.
We have recently shown that a newly isolated avian sarcoma virus, UR2, is defective in replication and contains no sequences homologous to the src gene of Rous sarcoma virus. In this study, we analyzed the genetic structure and transforming sequence of UR2 by oligonucleotide fingerprinting. The sizes of the genomic RNAs of UR2 and its associated helper virus, UR2AV, were determined to be 24S and 35S, respectively, by sucrose gradient sedimentation. The molecular weight of the 24S UR2 genomic RNA was estimated to be 1.1 x 10(6), corresponding to 3,300 nucleotides, by gel electrophoresis under the native and denatured conditions. RNase T1 oligonucleotide mapping indicated that UR2 RNA contains seven unique oligonucleotides in the middle of the genome and shares eight 5'- and six 3'-terminal oligonucleotides with UR2AV RNA. From these data, we estimated that UR2 RNA contains a unique sequence of about 12 kilobases in the middle of the genome, and contains 1.4 and 0.7 kilobases of sequences shared with UR2AV RNA at the 5' and 3' ends, respectively. Partial sequence analysis of the UR2-specific oligonucleotides by RNase A digestion revealed that there are no homologous counterparts to these oligonucleotides in the RNAs of other avian sarcoma and acute leukemia viruses studied to date. UR2-transformed non-virus-producing cells contain a single 24S viral RNA which is most likely the message coding for the transforming protein of UR2. On the basis of the uniqueness of the transforming sequence, we concluded that UR2 is a new member of the defective avian sarcoma viruses.  相似文献   

4.
S M Jong  C S Zong  T Dorai    L H Wang 《Journal of virology》1992,66(8):4909-4918
To determine the sequences of the oncogenes src (encoded by Rous sarcoma virus [RSV]) and ros (encoded by UR2) that are responsible for causing different transformation phenotypes and to correlate those sequences with differences in substrate recognition, we constructed recombinants of the two transforming protein tyrosine kinases (PTKs) and studied their biological and biochemical properties. A recombinant with a 5' end from src and a 3' end from ros, called SRC x ROS, transformed chicken embryo fibroblasts (CEF) to a spindle shape morphology, mimicking that of UR2. Neither of the two reverse constructs, ROS x SRC I and ROS x SRC II, could transform CEF. However, a transforming variant of ROS x SRC II appeared during passages of the transfected cells and was called ROS x SRC (R). ROS x SRC (R) contains a 16-amino-acid deletion that includes the 3' half of the transmembrane domain of ros. Unlike RSV, ROS x SRC (R) also transformed CEF to an elongated shape similar to that of UR2. We conclude that distinct phenotypic changes of RSV- and UR2-infected cells do not depend solely on the kinase domains of their oncogenes. We next examined cellular proteins phosphorylated by the tyrosine kinases of UR2, RSV, and their recombinants as well as a number of other avian sarcoma viruses including Fujinami sarcoma virus Y73, and some ros-derived variants. Our results indicate that the UR2-encoded receptorlike PTK P68gag-ros and its derivatives have a very restricted substrate specificity in comparison with the nonreceptor PTKs encoded by the rest of the avian sarcoma viruses. Data from ros and src recombinants indicate that sequences both inside and outside the catalytic domains of ros and src exert a significant effect on the substrate specificity of the two recombinant proteins. Phosphorylation of most of the proteins in the 100- to 200-kDa range correlated with the presence of the 5' src domain, including the SH2 region, but not with the kinase domain in the recombinants. This corroborates the conclusion given above that the kinase domain of src or ros per se is not sufficient to dictate the transforming morphology of these two oncogenes. High-level tyrosyl phosphorylation of most of the prominent substrates of src is not sufficient to cause a round-shape transformation morphology.  相似文献   

5.
UR2 is a newly characterized avian sarcoma virus whose genome contains a unique sequence that is not related to the sequences of other avian sarcoma virus transforming genes thus far identified. This unique sequence, termed ros, is fused to part of the viral gag gene. The product of the fused gag-ros gene of UR2 is a protein of 68,000 daltons (P68) immunoprecipitable by antiserum against viral gag proteins. In vitro translation of viral RNA and in vivo pulse-chase experiments showed that P68 is not synthesized as a large precursor and that it is the only protein product encoded in the UR2 genome, suggesting that it is involved in cell transformation by UR2. In vivo, P68 was phosphorylated at both serine and tyrosine residues. Immunoprecipitates of P68 with anti-gag antisera had a cyclic nucleotide-independent protein kinase activity that phosphorylated P68, rabbit immunoglobulin G in the immune complex, and alpha-casein. The phosphorylation by P68 was specific to tyrosine of the substrate proteins. P68 was phosphorylated in vitro at only one tyrosine site, and the tryptic phosphopeptide of in vitro-labeled P68 was different from those of Fujinami sarcoma virus P140 and avian sarcoma virus Y73-P90. A comparison of the protein kinases encoded by UR2, Rous sarcoma virus, Fujinami sarcoma virus, and avian sarcoma virus Y73 revealed that UR2-P68 protein kinase is distinct from the protein kinases encoded by those viruses by several criteria. Our results suggest that several different protein kinases encoded by viral transforming genes have the same functional specificity and cause essentially the same cellular alterations.  相似文献   

6.
The genome of avian sarcoma virus UR2 was completely sequenced and found to have a size of 3,165 nucleotides. The UR2-specific transforming sequence, ros, with a length of 1,273 nucleotides, is inserted between the truncated gag gene coding for p19 and the env gene coding for gp37 of the UR2AV helper virus. The deduced amino acid sequence for the UR2 transforming protein P68 gives a molecular weight of 61,113 and shows that it is closely related to the oncogene family coding for tyrosine protein kinases. P68 contains two distinctive hydrophobic regions that are absent in other tyrosine kinases, and it has unique amino acid changes and insertions within the conserved domain of the kinases. These characteristics may modulate the activity and target specificity of P68.  相似文献   

7.
35S- and 32P-labeled proteins from control chick embryo fibroblasts and from fibroblasts transformed by UR2 sarcoma virus, or by a temperature-sensitive mutant (tsLA29) of Rous sarcoma virus, were separated by two-dimensional electrophoresis on giant gels to detect transformation-specific changes in protein synthesis and total phosphorylation. A nontransforming avian retrovirus, UR2-associated virus (UR2AV), was also studied. Virus-coded proteins appear in whole cell lysates of all infected cells. The structural proteins can be identified by comparison with proteins immunoprecipitated with antivirus serum. The transforming proteins pp60src and p68ros, present in cells transformed with Rous sarcoma virus and UR2, respectively, are phosphorylated in vivo. Eighteen increases and eight decreases in cellular phosphoproteins are associated with transformation, and revert toward normal levels when cells infected with tsLA29 are incubated at 42 degrees C. These changes are more extensive than previously reported, but none represent new phosphorylations, since all phosphoproteins seen in transformed cells also appear to be phosphorylated to a certain extent in control cells. Fifteen cellular proteins show increased relative rates of synthesis apparently related either to transformation or to growth at 42 degrees C. Four other proteins are increased exclusively in cells incubated at 42 degrees C, but not at 37 degrees C, whether transformed or not. Eleven additional increases in the synthesis of cellular proteins, many quite large, and one seemingly a de novo induction, appear to be specific for transformation. These changes occur in cells transformed by either UR2 or Rous sarcoma virus at 37 degrees C, do not occur with UR2AV infection, and tend to revert in cells infected with tsLA29 incubated at 42 degrees C. These 11 changes may represent increases in cellular gene expression that are related specifically to the maintenance of the transformed state.  相似文献   

8.
D Liu  W J Rutter    L H Wang 《Journal of virology》1992,66(1):374-385
The human insulinlike growth factor 1 (hIGF-1) receptor (hIGFR) is a transmembrane protein tyrosine kinase (PTK) molecule which shares high sequence homology in the PTK domain with the insulin receptor and, to a lesser degree, the ros transforming protein of avian sarcoma virus UR2. To assess the transforming potential of hIGFR, we introduced the intact and altered hIGFR into chicken embryo fibroblasts (CEF). The full-length hIGFR cDNA (fIGFR) was cloned into a UR2 retroviral vector, replacing the original oncogene v-ros. fIGFR was able to promote the growth of CEF in soft agar and cause morphological alteration in the absence of added hIGF-1 to medium containing 11% calf and 1% chicken serum. The transforming ability of hIGFR was not further increased in the presence of 10 nM exogenous hIGF-1. The 180-kDa protein precursor of hIGFR was synthesized and processed into alpha and beta subunits. The overexpressed hIGFR in CEF bound hIGF-1 with high affinity (Kd = 5.4 x 10(-9) M) and responded to ligand stimulation with increased tyrosine autophosphorylation. The cDNA sequence coding for part of the beta subunit of hIGFR, including 36 amino acids of the extracellular domain and the entire transmembrane and cytoplasmic domains, was fused to the 5' portion of the gag gene in the UR2 vector to form an avian retrovirus. The resulting virus, named UIGFR, was able to induce morphological transformation and promote colony formation of CEF with a stronger potency than did fIGFR. The UIGFR genome encodes a membrane-associated, glycosylated gag-IGFR fusion protein. The specific tyrosine phosphorylation of the mature form of the fusion protein, P75, is sixfold higher in vitro and threefold higher in vivo than that of the native IGFR beta subunit, P95. In conclusion, overexpression of the native or an altered hIGFR can induce transformation of CEF with the gag-IGFR fusion protein possessing enhanced transforming potential, which is consistent with its increased in vitro and in vivo tyrosine phosphorylation.  相似文献   

9.
Avian sarcoma virus UR2 and its associated helper virus, UR2AV , were molecularly cloned into lambda gtWES X lambda B by using unintegrated viral DNAs. One UR2 and several UR2AV clones were obtained. The UR2 DNA was subsequently cloned into pBR322. Both UR2 and UR2AV DNAs were tested for their biological activity by transfection onto chicken embryo fibroblasts. When cotransfected with UR2AV DNA, UR2 DNA was able to induce transformation of chicken embryo fibroblasts with a morphology similar to that of parental UR2 . UR2 -specific protein with kinase activity and UR2 -specific RNA were detected in the transfected cells. Transforming virus, UR2 ( UR2AV ), was produced from the doubly transfected cells. Five of the six UR2AV clones tested were also shown to be biologically active. The insert of the UR2 DNA clone is 3.4 kilobases in length and contains two copies of the long terminal repeat. Detailed restriction mapping showed that UR2 DNA shared with UR2AV DNA 0.8 kilobases of 5' sequence, including a portion of 5' gag, and 1.4 kilobases of 3' sequence, including a portion of 3' env. The UR2 transforming sequence, ros, is ca. 1.2 kilobases. No significant homology was found between v-ros and the conserved regions of v-src, v-yes, or v- abl . By contrast, a significant homology was found between v-ros and v-fps. The v-fps-related sequence was mapped within a 300-base-pair sequence in the middle of ros.  相似文献   

10.
Antibodies present in two peritoneal exudates of rats bearing abdominal tumors induced by UR2-transformed rat cells were characterized. The ability to immunoprecipitate p68gag-ros and to inhibit the protein and phospholipid kinase activities of this protein was investigated. One of the exudates specifically inhibited tyrosyl phosphorylation by p68gag-ros but not the activity of other known tyrosyl kinases, such as p150gag-fps of UR1 avian sarcoma virus, p60src, and the insulin receptor. It precipitated p68gag-ros but not Pr76 or other gag-related proteins from UR2-infected cells. Phosphorylation of phosphatidylinositol was not affected by this exudate, suggesting that this activity is not intrinsic to p68gag-ros. Another exudate precipitated p68gag-ros but not gag-related proteins from UR2-infected cells or p140gag-fps from Fujinami sarcoma virus-infected cells. These results demonstrated that the antibodies in these exudates recognized epitopes present in the ros portion of the fused protein p68gag-ros, but only one of the two exudates inhibited the intrinsic tyrosyl kinase of p68gag-ros.  相似文献   

11.
Two monoclonal antibodies have been obtained that recognize antigenic determinants within the C-terminal fps-encoded region of P140gag-fps, the transforming protein of Fujinami avian sarcoma virus (FSV). The hybridomas which secrete these antibodies (termed 88AG and p26C) were isolated after the fusion of NS-1 mouse myeloma cells with B lymphocytes from Fischer rats that had been immunized with FSV-transformed rat-1 cells. FSV P140gag-fps immunoprecipitated by either antibody is active as a tyrosine-specific kinase and is able to autophosphorylate and to phosphorylate enolase in vitro. The fps-encoded proteins of all FSV variants, including the gag- p91fps protein of F36 virus, are recognized by both monoclonal antibodies. However, the product of the avian cellular c-fps gene. NCP98, and the transforming proteins of the recently isolated fps-containing avian sarcoma viruses 16L and UR1 are recognized only by the p26C antibody. The 88AG antibody therefore defines an epitope specific for FSV fps, whereas the epitope for p26C is conserved between cellular and viral fps proteins. The P105gag-fps protein of the PRCII virus is not precipitated by p26C (nor by 88AG), presumably as a consequence of the deletion of N-terminal fps sequences. These data indicate that the fps-encoded peptide sequences of 16L P142gag-fps and UR1 P150gag-fps are more closely related to NCP98 than that of FSV P140gag-fps. This supports the view that 16L and UR1 viruses represent recent retroviral acquisitions of the c-fps oncogene. The P85gag-fes transforming protein of Snyder-Theilen feline sarcoma virus is not precipitated by either monoclonal antibody but is recognized by some antisera from FSV tumor-bearing rats, demonstrating that fps-specific antigenic determinants are conserved in fes-encoded proteins.  相似文献   

12.
The level of phosphotyrosine in vinculin was determined in chicken embryo fibroblasts transformed by various strains of avian sarcoma virus. As previously reported (Sefton et al., Cell 24:165-174, 1981), vinculin was phosphorylated at tyrosine residues in most cultures examined, but the level varied greatly and no detectable change was found in cultures infected with Fujinami sarcoma virus or UR2 sarcoma virus. Regardless of the level of vinculin phosphorylation, the number of organized microfilament bundles was found to be decreased in all transformed cells. These results strongly suggest that tyrosine phosphorylation of vinculin is not an obligatory step in cell transformation by this class of oncogenes, nor is it correlated with the associated cytoskeletal disarray.  相似文献   

13.
The localization of the transforming protein P68gag-ros of avian sarcoma virus UR2, which has a hydrophobic region at the N terminus of its ros-specific tyrosine kinase-encoding sequence, was examined by subcellular fractionation. P68 behaved as an integral membrane protein associated with the plasma membrane of transformed cells. P68 became membrane associated very rapidly in its biogenesis. Three temperature-sensitive mutants of UR2 were isolated and characterized. Cells infected with the mutants were temperature sensitive for morphological alteration and colony formation. The mutant P68 proteins were membrane associated in mutant-infected cells regardless of the temperature but were active as protein kinases only at the permissive temperature. The results suggest that P68 is a membrane-associated protein whose kinase activity plays a crucial role in UR2-mediated cell transformation.  相似文献   

14.
15.
A recombinant DNA clone containing cellular sequences homologous to the transforming sequence, v-ros, of avian sarcoma virus UR2 was isolated from a chicken genomic DNA library. Heteroduplex mapping and nucleotide sequencing reveal that the v-ros sequences are distributed in nine exons ranging from 65 to 204 nucleotides on cellular ros (c-ros) DNA over a range of 11 kilobases. Comparison of the deduced amino acid sequences of c-ros and v-ros shows two differences: v-ros contains a three-amino-acid insertion within the hydrophobic domain presumed to be involved in membrane association, and (ii) the carboxyl 12 amino acids of v-ros are completely different from those of the deduced c-ros sequence. The deduced amino acid sequence of c-ros bears striking structural features similar to those of insulin and epidermal growth factor receptors, including the presumed hydrophobic membrane binding domain, amino acids flanking the domain, and the distance between the domain and the catalytic region of the kinase activity. The expression of c-ros appears to be under a very stringent control. When tissues at various stages of chicken development were analyzed, only kidney was found to contain a significant level of c-ros RNA. The level of c-ros RNA in kidney tissue is most abundant in 7- to 14-day-old chickens. Finally, nucleotide sequences of c-ros DNA and UR2-associated helper viral genome at regions corresponding to the gag ros recombination site suggest that the junction has been formed by RNA splicing.  相似文献   

16.
Kaposi's sarcoma associated-herpes virus encodes two proteins, MIR (modulator of immune recognition) 1 and 2, which are involved in the evasion of host immunity. MIR1 and 2 have been shown to function as an E3 ubiquitin ligase for immune recognition-related molecules (e.g. major histocompatibility complex class I, B7-2, and ICAM-1) through the BKS (bovine herpesvirus 4, Kaposi's sarcoma associated-herpes virus, and Swinepox virus) subclass of plant homeodomain (PHD) domain, termed the BKS-PHD domain. Here we show that the human genome also encodes a novel BKS-PHD domain-containing protein that functions as an E3 ubiquitin ligase and whose putative substrate is the B7-2 co-stimulatory molecule. This novel E3 ubiquitin ligase was designated as c-MIR (cellular MIR) based on its functional and structural similarity to MIR1 and 2. Forced expression of c-MIR induced specific down-regulation of B7-2 surface expression through ubiquitination, rapid endocytosis, and lysosomal degradation of the target molecule. This specific targeting was dependent upon the binding of c-MIR to B7-2. Replacing the BKS-PHD domain of MIR1 with the corresponding domain of c-MIR did not alter MIR1 function. The discovery of c-MIR, a novel E3 ubiquitin ligase, highlights the possibility that viral immune regulatory proteins originated in the host genome and presents unique functions of BKS-PHD domain-containing proteins in mammals.  相似文献   

17.
The question remains open whether the signaling pathways shown to be important for growth and transformation in adherent cultures proceed similarly and play similar roles for cells grown under anchorage-independent conditions. Chicken embryo fibroblasts (CEF) infected with the avian sarcoma virus UR2, encoding the oncogenic receptor protein-tyrosine kinase (RPTK) v-Ros, or with two of its transformation-impaired mutants were grown in nonadherent conditions in methylcellulose (MC)-containing medium, and the signaling functions essential for Ros-induced anchorage-independent growth were analyzed. We found that the overall tyrosine phosphorylation of cellular proteins in CEF transformed by v-Ros or by two oncogenic nonreceptor protein-tyrosine kinases (PTKs), v-Src and v-Yes, was dramatically reduced in nonadherent conditions compared with that in adherent conditions, indicating that cell adhesion to the extracellular matrix plays an important role in efficient substrate phosphorylation by these constitutively activated PTKs. The UR2 transformation-defective mutants were differentially impaired compared with UR2 in the activation of phosphatidylinositol 3-kinase (PI 3-kinase) and Stat3 in nonadherent conditions. Consistently, the constitutively activated mutants of PI 3-kinase and Stat3 rescued the ability of the UR2 mutants to promote anchorage-independent growth. Conversely, dominant negative mutants of PI 3-kinase and Stat3 inhibited UR2-induced anchorage-independent growth. UR2-infected CEF grown in nonadherent conditions displayed faster cell cycle progression than the control or the UR2 mutant-infected cells, and this appeared to correlate with a PI 3-kinase-dependent increase in cyclin A-associated Cdk2 activity. Treatment of UR2-infected cells with Cdk2 inhibitors led to the loss of the anchorage-independent growth-promoting activity of UR2. In conclusion, we have adopted an experimental system enabling us to study the signaling pathways in cells grown under anchorage-independent conditions and have identified matrix-independent activation of PI 3-kinase and Stat3 signaling functions, as well as the PI 3-kinase-dependent increase of cyclin A-associated Cdk2 kinase activity, to be critical for the Ros-PTK-induced anchorage-independent growth.  相似文献   

18.
The solution structure and dynamics of the recombinant 240 amino acid residue capsid protein from the Rous sarcoma virus has been determined by NMR methods. The structure was determined using 2200 distance restraints and 330 torsion angle restraints, and the dynamics analysis was based on (15)N relaxation parameters (R(1), R(2), and (1)H-(15)N NOE) measured for 153 backbone amide groups. The monomeric protein consists of independently folded N- and C-terminal domains that comprise residues Leu14-Leu146 and Ala150-Gln226, respectively. The domains exhibit different rotational correlation times (16.6(+/-0.1) ns and 12.6(+/-0.1) ns, respectively), are connected by a flexible linker (Ala147-Pro149), and do not give rise to inter-domain NOE values, indicating that they are dynamically independent. Despite limited sequence similarity, the structure of the Rous sarcoma virus capsid protein is similar to the structures determined recently for the capsid proteins of retroviruses belonging to the lentivirus and human T-cell leukemia virus/bovine leukemia virus genera. Structural differences that exist in the C-terminal domain of Rous sarcoma virus capsid relative to the other capsid proteins appear to be related to the occurrence of conserved cysteine residues. Whereas most genera of retroviruses contain a pair of conserved and essential cysteine residues in the C-terminal domain that appear to function by forming an intramolecular disulfide bond during assembly, the Rous sarcoma virus capsid protein does not. Instead, the Rous sarcoma virus capsid protein contains a single cysteine residue that appears to be conserved among the avian C-type retroviruses and is positioned in a manner that might allow the formation of an intermolecular disulfide bond during capsid assembly.  相似文献   

19.
C S Zong  B Poon  J Chen    L H Wang 《Journal of virology》1993,67(11):6453-6462
The transforming gene of avian sarcoma virus UR2, v-ros, encodes a receptor-like protein tyrosine kinase and differs from its proto-oncogene, c-ros, in its 5' truncation and fusion to viral gag, a three-amino-acid (aa) insertion in the transmembrane (TM) domain, and changes in the carboxyl region. To explore the basis for activation of the c-ros transforming potential, various c-ros retroviral vectors containing those changes were constructed and studied for their biological and biochemical properties. Ufcros codes for the full-length c-ros protein of 2,311 aa, Uppcros has 1,661-aa internal deletion in the extracellular domain, CCros contains the 3' c-ros cDNA fused 150 aa upstream of the TM domain to the UR2 gag, CVros is the same as CCros except that the 3' region is replaced by that of v-ros, and VCros is the same as CCros except that the 5' region is replaced by that of v-ros. The Ufcros, Uppcros, CCros, and CVros are inactive in transforming chicken embryo fibroblasts, whereas VCros is as potent as UR2 in cell-transforming and tumorigenic activities. Upon passages of CCros and CVros viruses, the additional extracellular sequence in comparison with that of v-ros was delected; concurrently, both viruses (named CC5d and CV5d, respectively) attained moderate transforming activity, albeit significantly lower than that of UR2 or VCros. The native c-ros protein has a very low protein tyrosine kinase activity, whereas the ppcros protein is constitutively activated in kinase activity. The inability of CCros and CVros to transform chicken embryo fibroblasts is consistent with the inefficient membrane association, instability, and low kinase activity of their encoded proteins. The CC5d and CV5d proteins are indistinguishable in kinase activity, membrane association, and stability from the v-ros protein. The reduced transforming potency of CC5d and CV5d proteins can be attributed only to their differential substrate interaction, notably the failure to phosphorylate a 88-kDa protein. We conclude that the 5' rather than the 3' modification of c-ros is essential for its oncogenic activation; the sequence upstream of the TM domain has a negative effect on the transforming activity of CCros and CVros and needs to be deleted to activate their biological activity.  相似文献   

20.
We assayed phosphatidylinositol (PI) kinase (EC 2.7.1.67) activity in detergent extracts of nontransformed or virus-transformed cells. Nontransformed chicken embryo fibroblasts (CEF) contain PI kinase activity with an apparent specific activity of 20 pmol/min per mg of protein. This activity sedimented as a single peak with a molecular weight of approximately 60,000 in a glycerol gradient, although immunoprecipitation with anti-p60src sera showed that the PI kinase activity is distinct from p60c-src. Extracts from CEF transformed by Rous sarcoma virus, Fujinami sarcoma virus, or avian sarcoma virus UR2 showed no elevation of PI kinase activity over nontransformed CEF. Removal of the oncogene products from extracts by immunoprecipitation did not change the level of PI kinase activity in extracts, suggesting that putative virus-coded PI kinases do not make a significant contribution to overall levels of PI kinase activity in transformed cells. Additionally, P140gag-fps was separated from cellular PI kinase by phosphocellulose chromatography. This partially purified fraction contained low PI kinase activity distinct from P140gag-fps, indicating that P140gag-fps has no detectable PI kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号