共查询到20条相似文献,搜索用时 15 毫秒
1.
N Rimmerman D Ben-Hail Z Porat A Juknat E Kozela M P Daniels P S Connelly E Leishman H B Bradshaw V Shoshan-Barmatz Z Vogel 《Cell death & disease》2013,4(12):e949
Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD. 相似文献
2.
Voltage-dependent anion channel (VDAC), Bax, and tBid play a central role in apoptosis regulation but their functioning is still very controversial. VDAC forms voltage gated pore in planar lipid bilayers, and acts as the pathway for the movement of substances in and out of the mitochondria by passive diffusion. Here we report that there is increase in the pore size of VDAC in the presence of Bax and tBid through bilayer electrophysiological experiments. We hereby hypothesize that this increase in pore size might cause swelling in the mitochondria, leading to the rupture of mitochondrial outer membrane and release of cytochrome c causing brain cell death. 相似文献
3.
Jorma Palvimo Anitta Mahonen Pekka H. Menp 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1987,931(3)
Chromosomal high-mobility-group (HMG) proteins have been examined as substrates for calcium/phospholipid-dependent protein kinase C. Protein kinase C from rat brain phosphorylated efficiently both HMG 14 and HMG 17 derived from calf thymus and the reactions were calcium/phospholipid-dependent. About 1 mol of 32P was incorporated per mol of HMG 14 and HMG 17. Phosphopeptide mapping suggested that the same major site was phosphorylated in both proteins at serine. The apparent Km values for HMG 14 and HMG 17 were about 5 μM. HMG 14, HMG 17 and the five histone H1 subtypes prepared from rat thymus, liver and spleen were phosphorylated by the kinase. HMG 14 and HMG 17 from transformed human lymphoblasts (Wi-L2) were also phosphorylated in a calcium/phospholipid-dependent manner. HMG 1 and HMG 2 from the tissues examined were found to be poor substrates for the kinase. 相似文献
4.
5.
Rudkouskaya A Chernoguz A Haskew-Layton RE Mongin AA 《Journal of neurochemistry》2008,105(6):2260-2270
Volume-regulated anion channels (VRACs) are activated by cell swelling and are permeable to inorganic and small organic anions, including the excitatory amino acids glutamate and aspartate. In astrocytes, ATP potently enhances VRAC activity and glutamate release via a P2Y receptor-dependent mechanism. Our previous pharmacological study identified protein kinase C (PKC) as a major signaling enzyme in VRAC regulation by ATP. However, conflicting results obtained with potent PKC blockers prompted us to re-evaluate the involvement of PKC in regulation of astrocytic VRACs by using small interfering RNA (siRNA) and pharmacological inhibitors that selectively target individual PKC isoforms. In primary rat astrocyte cultures, application of hypoosmotic medium (30% reduction in osmolarity) and 20 μM ATP synergistically increased the release of excitatory amino acids, measured with a non-metabolized analog of l -glutamate, d -[3 H]aspartate. Both Go6976, the selective inhibitor of Ca2+ -sensitive PKCα, βI/II, and γ, and MP-20-28, a cell permeable pseudosubstrate inhibitory peptide of PKCα and βI/II, reduced the effects of ATP on d -[3 H]aspartate release by ∼45–55%. Similar results were obtained with a mixture of siRNAs targeting rat PKCα and βI. Surprisingly, down-regulation of individual α and βI PKC isozymes by siRNA was completely ineffective. These data suggest that ATP regulates VRAC activity and volume-sensitive excitatory amino acid release via cooperative activation of PKCα and βI. 相似文献
6.
Kurusu T Yagala T Miyao A Hirochika H Kuchitsu K 《The Plant journal : for cell and molecular biology》2005,42(6):798-809
Elicitor-triggered transient membrane potential changes and Ca2+ influx through the plasma membrane are thought to be important during defense signaling in plants. However, the molecular bases for the Ca2+ influx and its regulation remain largely unknown. Here we tested effects of overexpression as well as retrotransposon (Tos17)-insertional mutagenesis of the rice two-pore channel 1 (OsTPC1), a putative voltage-gated Ca(2+)-permeable channel, on a proteinaceous fungal elicitor-induced defense responses in rice cells. The overexpressor showed enhanced sensitivity to the elicitor to induce oxidative burst, activation of a mitogen-activated protein kinase (MAPK), OsMPK2, as well as hypersensitive cell death. On the contrary, a series of defense responses including the cell death and activation of the MAPK were severely suppressed in the insertional mutant, which was complemented by overexpression of the wild-type gene. These results suggest that the putative Ca(2+)-permeable channel determines sensitivity to the elicitor and plays a role as a key regulator of elicitor-induced defense responses, activation of MAPK cascade and hypersensitive cell death. 相似文献
7.
Mitochondrial ATP synthase, a major ATP supplier in respiring cells, should be regulated in amount and in activity to respond to the varying demands of cells for ATP. We screened 80 protein kinase inhibitors and found that HeLa cells treated with four inhibitors exhibited reduced mitochondrial ATP synthesis activity. Consistently, knockdown of their target kinases (PKA, PKCδ, CaMKII and smMLCK) resulted in a decrease in mitochondrial ATP synthesis activity. Among them, mitochondria of smMLCK-knockdown cells contained only a small amount of ATP synthase, while the α- and β-subunits of ATP synthase were produced normally, suggesting that smMLCK affects assembly (or decay) of ATP synthase. 相似文献
8.
Juan Ouyang Wei Yu Jing Liu Nian Zhang Laurence Florens Jiekai Chen He Liu Michael Washburn Duanqing Pei Ting Xie 《The Journal of biological chemistry》2015,290(37):22782-22794
Sox2 is a key factor in maintaining self-renewal of embryonic stem cells (ESCs) and adult stem cells as well as in reprogramming differentiated cells back into pluripotent or multipotent stem cells. Although previous studies have shown that Sox2 is phosphorylated in human ESCs, the biological significance of Sox2 phosphorylation in ESC maintenance and reprogramming has not been well understood. In this study we have identified new phosphorylation sites on Sox2 and have further demonstrated that Cdk2-mediated Sox2 phosphorylation at Ser-39 and Ser-253 is required for establishing the pluripotent state during reprogramming but is dispensable for ESC maintenance. Mass spectrometry analysis of purified Sox2 protein has identified new phosphorylation sites on two tyrosine and six serine/Threonine residues. Cdk2 physically interacts with Sox2 and phosphorylates Sox2 at Ser-39 and Ser-253 in vitro. Surprisingly, Sox2 phosphorylation at Ser-39 and Ser-253 is dispensable for ESC self-renewal and cell cycle progression. In addition, Sox2 phosphorylation enhances its ability to establish the pluripotent state during reprogramming by working with Oct4 and Klf4. Finally, Cdk2 can also modulate the ability of Oct4, Sox2, and Klf4 in reprogramming fibroblasts back into pluripotent stem cells. Therefore, this study has for the first time demonstrated that Sox2 phosphorylation by Cdk2 promotes the establishment but not the maintenance of the pluripotent state. It might also help explain why the inactivation of CDK inhibitors such as p53, p21, and Arf/Ink4 promotes the induction of pluripotent stem cells. 相似文献
9.
Eun SY Woo IS Jang HS Jin H Kim MY Kim HJ Lee JH Chang KC Kim JH Seo HG 《Biochemical and biophysical research communications》2008,373(1):58-63
Human cytochrome c oxidase subunit VIa polypeptide 1 (COX6A1) was identified as a novel suppressor of Bcl-2-associated X protein (Bax)-mediated cell death using yeast-based functional screening of a mammalian cDNA library. The overexpression of COX6A1 significantly suppressed Bax- and N-(4-hydroxyphenyl)retinamide (4-HPR)-induced apoptosis in yeast and human glioblastoma-derived U373MG cells, respectively. The generation of reactive oxygen species (ROS) in response to Bax or 4-HPR was inhibited in yeast and U373MG cells that expressed COX6A1, indicating that COX6A1 exerts a protective effect against ROS-induced cell damage. 4-HPR-induced mitochondrial translocation of Bax, release of mitochondrial cytochrome c, and activation of caspase-3 were markedly attenuated in U373MG cells that stably expressed COX6A1. Our results demonstrate that yeast-based functional screening of human genes for inhibitors of Bax-sensitivity in yeast identified a protein that not only suppresses the toxicity of Bax in yeast, but also has a potential role in protecting mammalian cells from 4-HPR-induced apoptosis. 相似文献
10.
Sergey Doronin Fubao Lin Hsien-yu Wang Craig C. Malbon 《Protein expression and purification》2000,20(3):451
The ability of the cytoplasmic, full-length C-terminus of the β2-adrenergic receptor (BAC1) expressed in Escherichia coli to act as a functional domain and substrate for protein phosphorylation was tested. BAC1 was expressed at high-levels, purified, and examined in solution as a substrate for protein phosphorylation. The mobility of BAC1 on SDS–PAGE mimics that of the native receptor itself, displaying decreased mobility upon chemical reduction of disulfide bonds. Importantly, the C-terminal, cytoplasmic domain of the receptor expressed in E. coli was determined to be a substrate for phosphorylation by several candidate protein kinases known to regulate G-protein-linked receptors. Mapping was performed by proteolytic degradation and matrix-assisted laser desorption ionization, time-of-flight mass spectrometry. Purified BAC1 is phosphorylated readily by protein kinase A, the phosphorylation occurring within the predicted motif RRSSSK. The kinetic properties of the phosphorylation by protein kinase A displayed cooperative character. The activated insulin receptor tyrosine kinase, which phosphorylates the beta-adrenergic receptor in vivo, phosphorylates BAC1. The Y364 residue of BAC1 was predominantly phosphorylated by the insulin receptor kinase. GRK2 catalyzed modest phosphorylation of BAC1. Phosphorylation of the human analog of BAC1 in which Cys341 and Cys378 were mutated to minimize disulfide bonding constraints, displayed robust phosphorylation following thermal activation, suggesting under standard conditions that the population of BAC1 molecules capable of assuming the “activated” conformer required by GRKs is low. BAC1 was not a substrate for protein kinase C, suggesting that the canonical site in the second cytoplasmic loop of the intact receptor is preferred. The functional nature of BAC1 was tested additionally by expression of BAC1 protein in human epidermoid carcinoma A431 cells. BAC1 was found to act as a dominant-negative, blocking agonist-induced desensitization of the beta-adrenergic receptor when expressed in mammalian cells. Thus, the C-terminal, cytoplasmic tail of this G-protein-linked receptor expressed in E. coli acts as a functional domain, displaying fidelity with regard to protein kinase action in vivo and acting as a dominant-negative with respect to agonist-induced desensitization. 相似文献
11.
Biogenesis of yeast mitochondrial cytochrome c: a unique relationship to the TOM machinery 总被引:2,自引:0,他引:2
Wiedemann N Kozjak V Prinz T Ryan MT Meisinger C Pfanner N Truscott KN 《Journal of molecular biology》2003,327(2):465-474
The import of cytochrome c into the mitochondrial intermembrane space is not understood at a mechanistic level. While the precursor apocytochrome c can insert into protein-free lipid bilayers, the purified translocase of the outer membrane (TOM) complex supports the translocation of apocytochrome c into proteoliposomes. We report an in organello analysis of cytochrome c import into yeast mitochondria from wild-type cells and different mutants cells, each defective in one of the seven Tom proteins. The import of cytochrome c is not affected by removal of the receptor Tom20 or Tom70. Moreover, neither the transfer protein Tom5 nor the assembly factors Tom6 and Tom7 are needed for import of cytochrome c. When the general import pore (GIP)-protein Tom40 is blocked, the import of cytochrome c is moderately affected. Mitochondria lacking the central receptor and organizing protein Tom22 contain greatly reduced levels of cytochrome c. We conclude that up to two components of the TOM complex, Tom22 and possibly the GIP, are involved in the biogenesis of cytochrome c. 相似文献
12.
A cAMP-induced protein tyrosine phosphorylation and flagellar hyperactivation are controlled via complicated signaling cascades in mammalian spermatozoa. For instance, these events seem to be regulated positively by the PKA-mediated signaling and negatively by the PI3K/PDK1-mediated signaling. In this article, we have shown molecular changes of PKA and PDK1 in cAMP analog (cBiMPS)-treated boar spermatozoa in order to disclose possible roles of these kinases in protein tyrosine phosphorylation and hyperactivation. Ejaculated spermatozoa were incubated with cBiMPS, and then they were used for biochemical analyses of sperm kinases by Western blotting and indirect immunofluorescence and for assessment of flagellar movement. The first 30-min incubation with cBiMPS highly activated PKA of the principal piece to the accompaniment of autophosphorylation on Thr-197 of catalytic subunits. However, protein tyrosine phosphorylation and hyperactivation were fully induced in the sperm samples after the 180-min incubation. A potentially active form of PDK1 (54/55-kDa phospho-PDK1) was detected in the principal piece of the spermatozoa during the 90-min incubation. Another potentially active form (59-kDa phospho-PDK1) gradually increased during the same incubation period. However, the PDK1 suddenly became inactive by the dephosphorylation after the 180-min incubation, namely coincidently with full induction of protein tyrosine phosphorylation and hyperactivation. Additionally, existence of PI3K-dependently suppressing mechanisms for protein tyrosine phosphorylation was confirmed in the principal piece by pharmacological experiments with LY294002 and biochemical analyses with anti-PI3K p85 antibodies. These findings suggest that dephosphorylation of PDK1 may be a molecular switch for enhancement of protein tyrosine phosphorylation and flagellar hyperactivation in boar spermatozoa. 相似文献
13.
Maria J. Prez M. Carmen Calcerrada R. Edgardo Cataln Ana M. Martínez 《Neurochemistry international》1999,34(6):723-490
Stimulation of rat cerebral cortex with endothelin-1 (ET-1) caused an increase in the tyrosine phosphorylation of several proteins. Two of these phosphoproteins were identified by the immunoprecipitation assays as being the focal adhesion kinase p125FAK and crk-associated substrate p130Cas. This effect was time- and dose-dependent, with an EC50 value of 3.9×10−8 M. In addition, the cerebral cortex ET receptor subtype involved in this action was determined by using BQ-123 and BQ-788, which are ETA and ETB receptor antagonists respectively. Our results indicate that the ET-1 effect on protein tyrosine phosphorylation occurred through ETB receptors. The requirement for extracellular Ca2+ on ET-1 action was also studied. ET-1-stimulated tyrosine phosphorylation of both p125FAK and p130Cas was abolished in the absence of external Ca2+ or in the presence of nimodipine, a Ca2+ channel-blocker. These results suggest that the ET-1-stimulated protein tyrosine phosphorylation was secondary to Ca2+ influx through the dihydropyridine Ca2+-channel. In slices where protein kinase C was inhibited, ET-1-stimulated tyrosine phosphorylation of both proteins was reduced. These results indicate that ET-1 modulates the tyrosine phosphorylation of specific proteins, which may be involved in adhesion processes in the brain. 相似文献
14.
Fang JK Prabu SK Sepuri NB Raza H Anandatheerthavarada HK Galati D Spear J Avadhani NG 《FEBS letters》2007,581(7):1302-1310
We have mapped the sites of ischemia/reperfusion-induced phosphorylation of cytochrome c oxidase (CcO) subunits in rabbit hearts by using a combination of Blue Native gel/Tricine gel electrophoresis and nano-LC-MS/MS approaches. We used precursor ion scanning combined with neutral loss scanning and found that mature CcO subunit I was phosphorylated at tandem Ser115/Ser116 positions, subunit IVi1 at Thr52 and subunit Vb at Ser40. These sites are highly conserved in mammalian species. Molecular modeling suggests that phosphorylation sites of subunit I face the inter membrane space while those of subunits IVi1 and Vb face the matrix side. 相似文献
15.
Definitive expression of c-mos in late meiotic prophase leads to phosphorylation of a 34 kda protein in cultured rat spermatocytes 总被引:4,自引:0,他引:4
Nagao Y 《Cell biology international》2002,26(2):193-201
To investigate the role of c-mos in rat spermatogenesis, expression of c-mos, MAP kinase kinase (MAPKK), MAP kinase (MAPK), cdc2 and protein kinase A (PKA) by spermatogenic cell culture of 14 day-old rats was examined. MAPKK and PKA expressions were constitutive, whereas the expression of MAPK and cdc2 in spermatogonia initially decreased, but later increased on meiotic maturation of spermatocytes. c-mos expression was definitive of late meiotic prophase. c-mos immunoprecipitates prepared from the c-mos-enriched fraction (pI9.0-9.6) could form complex(es) in the cultured spermatogenic cell lysates. In vitro phosphorylation of the c-mos immune complexes revealed a 34 kDa protein that was phosphorylated at serine and threonine residues as a target of the c-mos signal. Its pI value was 4.4-4.5, and cdc2 was not detected, making it different from cdc2 (p34). These results suggest that the phosphorylation of the 34 kDa protein by the c-mos signal may play a crucial role in the meiotic division of rat spermatocytes. 相似文献
16.
Organization of intermediate filament, a major component of cytoskeleton, is regulated by protein phosphorylation/dephosphorylation, which is a dynamic process governed by a balance between the activities of involved protein kinases and phosphatases. Blocking dephosphorylation by protein phosphatase inhibitors such as okadaic acid (OA) leads to an apparent activation of protein kinase(s) and to genuine activation of phosphatase-regulated protein kinase(s). Treatment of 9L rat brain tumor cells with OA results in a drastically increased phosphorylation of vimentin, an intermediate filament protein. In-gel renaturing assays and in vitro kinase assays using vimentin as the exogenous substrate indicate that certain protein kinase(s) is activated in OA-treated cells. With specific protein kinase inhibitors, we show the possible involvement of the cdc2 kinase- and p38 mitogen-activated protein kinase (p38MAPK)-mediated pathways in this process. Subsequent in vitro assays demonstrate that vimentin may serve as an excellent substrate for MAPK-activated protein kinase-2 (MAPKAPK-2), the downstream effector of p38MAPK, and that MAPKAPK-2 is activated with OA treatment. Comparative analysis of tryptic phosphopeptide maps also indicates that corresponding phosphopeptides emerged in vimentin from OA-treated cells and were phosphorylated by MAPKAPK-2. Taken together, the results clearly demonstrate that MAPKAPK-2 may function as a vimentin kinase in vitro and in vivo. These findings shed new light on the possible involvement of the p38MAPK signaling cascade, via MAPKAPK-2, in the maintenance of integrity and possible physiological regulation of intermediate filaments. J. Cell. Biochem. 71:169–181, 1998. © 1998 Wiley-Liss, Inc. 相似文献
17.
Ya-Nan Xue Bing-Bing Yu Jiu-Ling Li Rui Guo Li-Chao Zhang Lian-Kun Sun Ya-Nan Liu Yang Li 《Experimental cell research》2019,374(1):249-258
Many cell death regulators physically or functionally interact with metabolic enzymes. These interactions provide insights into mechanisms of anticancer treatments from the perspective of tumor cell metabolism and apoptosis. Recent studies have shown that zinc and p53 not only induce tumor cell apoptosis, but also regulate tumor cell metabolism. However, the underlying mechanism is complex and remains unclear, making further research imperative to provide clues for future cancer treatments. In this study, we found that hexokinase 2 (HK2), which has dual metabolic and apoptotic functions, is downstream of zinc and p53 in both prostate cancer patient tissue and prostate cancer cell lines. Notably, the mitochondrial location of HK2 is crucial for its function. We demonstrate that zinc and p53 disrupt mitochondrial binding of HK2 in prostate cancer cells by phosphorylating VDAC1, which is mediated by protein kinase B (Akt) inhibition and glycogen synthase kinase 3β (GSK3β) activation. In addition, we found that zinc combined with p53 significantly inhibited tumor growth in a prostate cancer cell xenograft model. Therefore, interference of the mitochondrial localization of HK2 by zinc and p53 may provide a new treatment approach for cancer. 相似文献
18.
The quantity and activity of mitochondria vary dramatically in tissues and are modulated in response to changing cellular energy demands and environmental factors. The amount of mitochondrial DNA (mtDNA), which encodes essential subunits of the oxidative phosphorylation complexes required for cellular ATP production, is also tightly regulated, but by largely unknown mechanisms. Using murine T cells as a model system, we have addressed how specific signaling pathways influence mitochondrial biogenesis and mtDNA copy number. T cell receptor (TCR) activation results in a large increase in mitochondrial mass and membrane potential and a corresponding amplification of mtDNA, consistent with a vital role for mitochondrial function for growth and proliferation of these cells. Independent activation of protein kinase C (via PMA) or calcium-related pathways (via ionomycin) had differential and sub-maximal effects on these mitochondrial parameters, as did activation of naïve T cells with proliferative cytokines. Thus, the robust mitochondrial biogenesis response observed upon TCR activation requires synergy of multiple downstream signaling pathways. One such pathway involves AMP-activated protein kinase (AMPK), which we show has an unprecedented role in negatively regulating mitochondrial biogenesis that is mammalian target of rapamycin (mTOR)-dependent. That is, inhibition of AMPK after TCR signaling commences results in excessive, but uncoordinated mitochondrial proliferation. Thus mitochondrial biogenesis is not under control of a single master regulatory circuit, but rather requires the convergence of multiple signaling pathways with distinct downstream consequences on the organelle’s structure, composition, and function. 相似文献
19.
Pituitary adenylate cyclase-activating polypeptide (PACAP)-deficient mice are prone to sudden neonatal death and have reduced respiratory response to hypoxia. Here we found that PACAP-38 elevated cytosolic [Ca(2+)] ([Ca(2+)](i)) in the oxygen sensing type I cells but not the glial-like type II (sustentacular) cells of the rat carotid body. This action of PACAP could not be mimicked by vasoactive intestinal peptide but was abolished by PACAP 6-38, implicating the involvement of PAC(1) receptors. H89, a protein kinase A (PKA) inhibitor attenuated the PACAP response. Simultaneous measurement of membrane potential and [Ca(2+)](i) showed that the PACAP-mediated [Ca(2+)](i) rise was accompanied by depolarization and action potential firing. Ni(2+), a blocker of voltage-gated Ca(2+) channels (VGCC) or the removal of extracellular Ca(2+) reversibly inhibited the PACAP-mediated [Ca(2+)](i) rise. In the presence of tetraethylammonium (TEA) and 4-aminopyridine (4-AP), PACAP reduced a background K(+) current. Anandamide, a blocker of TWIK-related acid-sensitive K(+) (TASK)-like K(+) channel, occluded the inhibitory action of PACAP on K(+) current. We conclude that PACAP, acting via the PAC(1) receptors coupled PKA pathway inhibits a TASK-like K(+) current and causes depolarization and VGCC activation. This stimulatory action of PACAP in carotid type I cells can partly account for the role of PACAP in respiratory disorders. 相似文献
20.
Carlos A. Elena-Real Katiuska González-Arzola Gonzalo Pérez-Mejías Antonio Díaz-Quintana Adrián Velázquez-Campoy Bénédicte Desvoyes Crisanto Gutiérrez Miguel A. De la Rosa Irene Díaz-Moreno 《The Plant journal : for cell and molecular biology》2021,106(1):74-85
Programmed cell death (PCD) is crucial for development and homeostasis of all multicellular organisms. In human cells, the double role of extra-mitochondrial cytochrome c in triggering apoptosis and inhibiting survival pathways is well reported. In plants, however, the specific role of cytochrome c upon release from the mitochondria remains in part veiled yet death stimuli do trigger cytochrome c translocation as well. Here, we identify an Arabidopsis thaliana 14-3-3ι isoform as a cytosolic cytochrome c target and inhibitor of caspase-like activity. This finding establishes the 14-3-3ι protein as a relevant factor at the onset of plant H2O2-induced PCD. The in vivo and in vitro studies herein reported reveal that the interaction between cytochrome c and 14-3-3ι exhibits noticeable similarities with the complex formed by their human orthologues. Further analysis of the heterologous complexes between human and plant cytochrome c with plant 14-3-3ι and human 14-3-3ε isoforms corroborated common features. These results suggest that cytochrome c blocks p14-3-3ι so as to inhibit caspase-like proteases, which in turn promote cell death upon H2O2 treatment. Besides establishing common biochemical features between human and plant PCD, this work sheds light onto the signaling networks of plant cell death. 相似文献