首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular engineering of plant immunity to confer resistance against plant viruses holds great promise for mitigating crop losses and improving plant productivity and yields, thereby enhancing food security. Several approaches have been employed to boost immunity in plants by interfering with the transmission or lifecycles of viruses. In this review, we discuss the successful application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) (CRISPR/Cas) systems to engineer plant immunity, increase plant resistance to viruses, and develop viral diagnostic tools. Furthermore, we examine the use of plant viruses as delivery systems to engineer virus resistance in plants and provide insight into the limitations of current CRISPR/Cas approaches and the potential of newly discovered CRISPR/Cas systems to engineer better immunity and develop better diagnostics tools for plant viruses. Finally, we outline potential solutions to key challenges in the field to enable the practical use of these systems for crop protection and viral diagnostics.

CRISPR-Cas systems unlock the potential of understanding the molecular basis of plant virus interactions, engineering immunity against plant viruses, and developing sensitive and specific diagnostics.  相似文献   

2.
While it is well established that viruses play an important role in the structure of marine microbial food webs, few studies have directly addressed their role in large lake systems. As part of an ongoing study of the microbial ecology of Lake Erie, we have examined the distribution and diversity of viruses in this system. One surprising result has been the pervasive distribution of cyanophages that infect the marine cyanobacterial isolate Synechococcus sp. strain WH7803. Viruses that lytically infect this cyanobacterium were identified throughout the western basin of Lake Erie, as well as in locations within the central and eastern basins. Analyses of the gene encoding the g20 viral capsid assembly protein (a conservative phylogenetic marker for the cyanophage) indicate that these viruses, as well as amplicons from natural populations and the ballast of commercial ships, are related to marine cyanophages but in some cases form a unique clade, leaving questions concerning the native hosts of these viruses. The results suggest that cyanophages may be as important in freshwater systems as they are known to be in marine systems.  相似文献   

3.
While it is well established that viruses play an important role in the structure of marine microbial food webs, few studies have directly addressed their role in large lake systems. As part of an ongoing study of the microbial ecology of Lake Erie, we have examined the distribution and diversity of viruses in this system. One surprising result has been the pervasive distribution of cyanophages that infect the marine cyanobacterial isolate Synechococcus sp. strain WH7803. Viruses that lytically infect this cyanobacterium were identified throughout the western basin of Lake Erie, as well as in locations within the central and eastern basins. Analyses of the gene encoding the g20 viral capsid assembly protein (a conservative phylogenetic marker for the cyanophage) indicate that these viruses, as well as amplicons from natural populations and the ballast of commercial ships, are related to marine cyanophages but in some cases form a unique clade, leaving questions concerning the native hosts of these viruses. The results suggest that cyanophages may be as important in freshwater systems as they are known to be in marine systems.  相似文献   

4.
5.
The indirect fluorescent antibody test employing treated and standardized antisera and conjugated antiglobulin has been used successfully, in conjunction with a technique for growing and staining virus cell systems in situ on microscope slides, in the identification of nine respiratory viruses. By using pooled antisera in a single test, the presence or absence of these viruses was determined in 18 to 45 hr after inoculation of slide microtissue culture.  相似文献   

6.
细菌和古菌等微生物与病毒(噬菌体)之间的生存之战是一场“军备竞赛”。细菌和古菌已经进化出多种先天和适应性的免疫系统来抵御噬菌体的入侵。噬菌体则利用不同的对抗策略来躲避这些噬菌体防御机制。CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-Associated)系统就是细菌和古菌广泛编码的一种抵御噬菌体等外源遗传元件的获得性免疫系统,与此同时,噬菌体也进化出特异性的anti-CRISPR来抵抗CRISPR-Cas系统的免疫。本文系统综述了anti-CRISPR的发现过程、分类和作用机制,并展望了其潜在的应用。  相似文献   

7.
The relatedness of the RNAs of the three avian systems, including six avian leukosis-sarcoma viruses, four reticuloendotheliosis viruses, and the microsome fraction of normal uninfected chicken embryo cells, containing RNA and a DNA polymerase have been studied by nucleic acid hybridization. All six avian leukosis-sarcoma viruses have closely related nucleotide sequences; and all four reticuloendotheliosis viruses have closely related nucleotide sequences. But, almost no similarities were detected between the RNAs of avian leukosis-sarcoma viruses and reticuloendotheliosis viruses. The RNA template of the endogenous RNA-directed DNA polymerase activity of normal uninfected chicken cells had no detectable relationship to RNAs of avian leukosis-sarcoma and reticuloendotheliosis viruses.  相似文献   

8.
The principal biological function of bacterial and archaeal CRISPR systems is RNA-guided adaptive immunity against viruses and other mobile genetic elements (MGEs). These systems show remarkable evolutionary plasticity and functional versatility at multiple levels, including both the defense mechanisms that lead to direct, specific elimination of the target DNA or RNA and those that cause programmed cell death (PCD) or induction of dormancy. This flexibility is also evident in the recruitment of CRISPR systems for nondefense functions. Defective CRISPR systems or individual CRISPR components have been recruited by transposons for RNA-guided transposition, by plasmids for interplasmid competition, and by viruses for antidefense and interviral conflicts. Additionally, multiple highly derived CRISPR variants of yet unknown functions have been discovered. A major route of innovation in CRISPR evolution is the repurposing of diverged repeat variants encoded outside CRISPR arrays for various structural and regulatory functions. The evolutionary plasticity and functional versatility of CRISPR systems are striking manifestations of the ubiquitous interplay between defense and “normal” cellular functions.

The CRISPR systems show remarkable functional versatility beyond their principal function as an adaptive immune mechanism. This Essay discusses how derived CRISPR systems have been recruited by transposons on multiple occasions and mediate RNA-guided transposition; derived CRISPR RNAs are frequently recruited for regulatory functions.  相似文献   

9.
MS2 coliphage (ATCC 15597-B1) has been proposed by the U.S. Environmental Protection Agency as a surrogate for enteric viruses to determine the engineering requirements of chemical disinfection systems on the basis of previous experience with chlorine. The objective of this study was to determine whether MS2 coliphage was a suitable indicator for the inactivation of enteric viruses when ozone disinfection systems were used. Bench-scale experiments were conducted in 2-liter-batch shrinking reactors containing ozone demand-free 0.05 M phosphate buffer (pH 6.9) at 22 degrees C. Ozone was added as a side stream from a concentrated stock solution. It was found that an ozone residual of less than 40 micrograms/liter at the end of 20 s inactivated greater than 99.99% of MS2 coliphage in the demand-free buffer. When MS2 was compared directly with poliovirus type 3 in paired experiments, 1.6 log units more inactivation was observed with MS2 coliphage than with poliovirus type 3. It was concluded that the use of MS2 coliphage as a surrogate organism for studies of enteric virus with ozone disinfection systems overestimated the inactivation of enteric viruses. It is recommended that the regulatory agencies evaluate their recommendations for using MS2 coliphage as an indicator of enteric viruses.  相似文献   

10.
MS2 coliphage (ATCC 15597-B1) has been proposed by the U.S. Environmental Protection Agency as a surrogate for enteric viruses to determine the engineering requirements of chemical disinfection systems on the basis of previous experience with chlorine. The objective of this study was to determine whether MS2 coliphage was a suitable indicator for the inactivation of enteric viruses when ozone disinfection systems were used. Bench-scale experiments were conducted in 2-liter-batch shrinking reactors containing ozone demand-free 0.05 M phosphate buffer (pH 6.9) at 22 degrees C. Ozone was added as a side stream from a concentrated stock solution. It was found that an ozone residual of less than 40 micrograms/liter at the end of 20 s inactivated greater than 99.99% of MS2 coliphage in the demand-free buffer. When MS2 was compared directly with poliovirus type 3 in paired experiments, 1.6 log units more inactivation was observed with MS2 coliphage than with poliovirus type 3. It was concluded that the use of MS2 coliphage as a surrogate organism for studies of enteric virus with ozone disinfection systems overestimated the inactivation of enteric viruses. It is recommended that the regulatory agencies evaluate their recommendations for using MS2 coliphage as an indicator of enteric viruses.  相似文献   

11.
人类及动物RNA病毒的反向遗传系统   总被引:7,自引:0,他引:7  
反向遗传系统可以对RNA病毒直接进行遗传操作,为RNA病毒的分子生物学研究提供了一种强大的工具。在过去20年,特别是自90年代中期第一例负链RNA病毒感染性克隆构建成功以来,动物RNA病毒的分子生物学研究取得了长足的进展,这很大程度上归功于各种动物RNA病毒反向遗传系统的建立。这里系统总结了人类及动物非反转录RNA病毒中各类代表性成员在建立反向遗传系统时的方案设计、遇到的困难及研究者如何克服这些困难。分类讨论到的代表性病毒种属有脊髓灰质炎病毒、冠状病毒(包括SARS病毒)、黄病毒、野田村病毒、流感病毒、传染性法氏囊病病毒以及呼肠孤病毒等。  相似文献   

12.
13.
Summary The Flaviviridae include almost 70 viruses, nearly half of which have been associated with human disease. These viruses are among the most important arthropod-borne viruses worldwide and include dengue, yellow fever, and Japanese encephalitis viruses. Morbidity and mortality caused by these viruses vary, but collectively they account for millions of encephalitis, hemorrhagic fever, arthralgia, rash, and fever cases per year. Most of the members of this family are transmitted between vertebrate hosts by arthropod vectors, most commonly mosquitoes or ticks. Transmission cycles can be simple or complex depending on the hosts, vectors, the virus, and the environmental factors affecting both hosts and viruses. Replication of virus in invertebrate hosts does not seem to result in any significant pathology, which suggests a close evolutionary relationship between virus and vector. Another example of this relationship is the ability of these viruses to grow in invertebrate cell culture, where replication usually results in a steady state, persistent infection, often without cytopathic effect. Yields of virus from insect cell culture vary but are generally similar to yields in vertebrate cells. Replication kinetics are comparable between insect and vertebrate cell lines, despite differences in incubation temperature. Both vertebrate and insect cell culture systems continue to play a significant role in flavivirus isolation and the diagnosis of disease caused by these agents. Additionally, these culture systems permit the study of flavivirus attachment, penetration, replication, and release from cells and have been instrumental in the production and characterization of live-attenuated vaccines. Both vertebrate and insect cell culture systems will continue to play a significant role in basic and applied flavivirus research in the future.  相似文献   

14.
Viruses usually exhibit strict species‐specificity as a result of co‐evolution with the host. Thus, in mouse models, a great barrier exists for analysis of infections with human‐tropic viruses. Mouse models are unlikely to faithfully reproduce the human immune response to viruses or viral compounds and it is difficult to evaluate human therapeutic efficacy with antiviral reagents in mouse models. Humans and mice essentially have different immune systems, which makes it difficult to extrapolate mouse results to humans. In addition, apart from immunological reasons, viruses causing human diseases do not always infect mice because of species tropism. One way to determine tropism would be a virus receptor that is expressed on affected cells. The development of gene‐disrupted mice and Tg mice, which express human receptor genes, enables us to analyze several viral infections in mice. Mice are, indeed, susceptible to human viruses when artificially infected in receptor‐supplemented mice. Although the mouse cells less efficiently permit viral replication than do human cells, the models for analysis of human viruses have been established in vivo as well as in vitro, and explain viral pathogenesis in the mouse systems. In most systems, however, nucleic acid sensors and type I interferon suppress viral propagation to block the appearance of infectious manifestation. We herein review recent insight into in vivo antiviral responses induced in mouse infection models for typical human viruses.  相似文献   

15.
RNA recombination in plants was first identified by the repairin vivoof a deleted genomic RNA of brome mosaic virus. Subsequently, evidence of recombination has been detected not only in experimental systems but also among an increasing number of naturally occurring isolates of plant viruses. This article discusses the different recombinants that have been found among viruses in the genusTobravirusand describes other examples of recombination among plant viruses and between the genomes of viruses and their hosts.  相似文献   

16.
Aim:  To isolate viruses of specific heterotrophic bacterial strains from marine environments using a host addition/virus amplification protocol (HAVAP) for use in phage/host systems.
Methods and Results:  Bacteria-free seawater samples containing natural viruses assemblages were inoculated with a single laboratory grown bacterial host of interest in a nutrient-enriched [peptone, Fe(III) and yeast extract] seawater suspension. These conditions enhanced the replication of only those virus(s) capable of infecting the host bacterium. After incubation, free viruses were recovered at concentrations ranging 105–1010 infectious virus particles per ml of seawater. Using this approach, 15 viruses were isolated and represented 12 unique phage/host systems. Two of the hosts tested were infected by more than one virus.
Conclusions:  Isolation of high concentrations of specific viruses is possible even if their initial concentrations in native waters are low. This approach allows the recovery of phage/host systems that may not be numerically dominant.
Significance and Impact of the Study:  This host enrichment protocol for virus detection and isolation is well-suited for aquatic viral ecology studies that require phage/host systems.  相似文献   

17.
The contribution of cell culture systems in the diagnosis of viral infections has been well recognized over the years. Not only did such systems make possible the direct isolation and identification of viruses, but also the production of viral diagnostic reagents for rapid diagnosis, the evaluation of antiviral agents, and the production of vaccines for the control of viral diseases. Although many reagents for rapid detection of viral antigens/genomes are currently available, none will make possible discoveries of new viral agents. Thus sensitive cell culture systems are still essential for the rapid and accurate diagnosis of viral infections. Since, as yet, no single cell culture system is susceptible to all viruses, the constant search for additional sensitive cell culture systems for detecting those unknown and/or currently non-cultivable viral agents continues to be an open area of investigation in the field of diagnostic virology.  相似文献   

18.
Untreated or improperly treated wastewater has often been cited as the primary contamination source of groundwater. The use of decentralized wastewater treatment systems has applicability around the world since it obviates the need for extensive infrastructure development and expenditures. The use of a submerged flow constructed wetland (CW) and a sand filter to remove bacterial and viral pathogens from wastewater streams was evaluated in this study Salmonella sp. and a bacteriophages tracer were used in conjunction with the conservative bromide tracer to understand the fate and transport of these organisms in these treatment systems. Viral breakthrough numbers in the sand filter and CW were similar with a Spearman Rank correlation of 0.8 (P<0.05). In the CW, the virus exhibited almost a 3-log reduction, while in the sand filter, the viruses exhibited a 2-log reduction. The bacterial tracers, however, did not exhibit similar reductions. Low numbers of bacteria and viruses were still detectable in the effluent streams suggesting that disinfection of the effluent is critical. The survival of the tracer bacteria and viruses was as expected dependent on the biotic and abiotic conditions existing within the wastewater. The results suggest that the microbial removal characteristics of decentralized wastewater treatment systems can vary and depend on factors such as adsorption, desorption and inactivation which in turn depend on the design specifics such as filter media characteristics and local climatic conditions.  相似文献   

19.
Wastewater treatment plants (WWTPs) contain high density and diversity of viruses which can significantly impact microbial communities in aquatic systems. While previous studies have investigated viruses in WWTP samples that have been specifically concentrated for viruses and filtered to exclude bacteria, little is known about viral communities associated with bacterial communities throughout wastewater treatment systems. Additionally, differences in viral composition between attached and suspended growth wastewater treatment bioprocesses are not well characterized. Here, shotgun metagenomics was used to analyse wastewater and biomass from transects through two full-scale WWTPs for viral composition and associations with bacterial hosts. One WWTP used a suspended growth activated sludge bioreactor and the other used a biofilm reactor (trickling filter). Myoviridae, Podoviridae and Siphoviridae were the dominant viral families throughout both WWTPs, which are all from the order Caudovirales. Beta diversity analysis of viral sequences showed that samples clustered significantly both by plant and by specific sampling location. For each WWTP, the overall bacterial community structure was significantly different than community structure of bacterial taxa associated with viral sequences. These findings highlight viral community composition in transects through different WWTPs and provide context for dsDNA viral sequences in bacterial communities from these systems.  相似文献   

20.
Because of the small size of their genome, viral genes have been forerunners in helping us understand gene expression. It is also because of their small size that viruses have elaborated the amazing variety of strategies that enables them to produce all the proteins they require for their multiplication. As a consequence, many of the strategies of expression known to occur in cell systems were first demonstrated in viruses. The aim of this review is to highlight the contribution of viruses to our knowledge of cell processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号