首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To investigate the potential utility of Pseudomonas exotoxin (PE) in forming rationally designed chemotherapeutic agents, we inserted a cDNA encoding transforming growth factor alpha (TGF alpha) at several locations in a gene encoding a mutant full-length PE (PE4E) which does not bind to the PE receptor. After expression in Escherichia coli, we purified the chimeric toxins to near homogeneity and showed that they were specifically cytotoxic to human epidermoid, ovarian, colon, and hepatocellular carcinoma lines. Like the previously reported TGF alpha-PE40, one of the new molecules (TGF alpha-PE4E) contains the ligand at the amino terminus. Two additional chimeras (PE4E-TGF alpha and PE4E-TGF alpha-598-613) each contain TGF alpha inserted near the carboxyl terminus of PE. We show that preservation of the correct PE carboxyl-terminal amino acid sequence, REDLK, allows the toxins containing TGF alpha carboxyl inserts to retain significant cytotoxicity against target cells, since another molecule (PE4E-TGF alpha-ILK) containing a nonfunctional carboxyl-terminal sequence was over 100-fold less active. The chimeric toxins with TGF alpha had the same binding affinity for the EGF receptor whether the ligand occupied the amino or carboxyl position. Molecules with TGF alpha near the carboxyl position were consistently less active against target cells but also less toxic to mice than those with TGF alpha at the amino terminus, indicating both types of molecules might be therapeutically effective. Our results establish that a ligand can be placed near the carboxyl terminus of PE, within the portion of the toxin that translocates to the cytosol. The amino-terminal position in such molecules is then available for the placement of other targeting ligands.  相似文献   

2.
The lethal factor (LF) and edema factor (EF) components of anthrax toxin are toxic to animal cells only if internalized by interaction with the protective antigen (PA) component. PA binds to a cell surface receptor and is proteolytically cleaved to expose a binding site for LF and EF. To study how LF and EF are internalized and trafficked within cells, LF was fused to the translocation and ADP-ribosylation domains (domains II and III, respectively) of Pseudomonas exotoxin A. LF fusion proteins containing Pseudomonas exotoxin A domains II and III were less toxic than those containing only domain III. Fusion proteins with a functional endoplasmic reticulum retention sequence, REDLK, at the carboxyl terminus of domain III were less toxic than those with a nonfunctional sequence, LDER. The most potent fusion protein, FP33, had an EC50 = 2 pM on Chinese hamster ovary cells, exceeding that of native Pseudomonas exotoxin A (EC50 = 420 pM). Toxicity of all the fusion proteins required the presence of PA and was blocked by monensin. These data suggest that LF and LF fusion proteins are efficiently translocated from acidified endosomes directly to the cytosol without trafficking through other organelles, as is required for Pseudomonas exotoxin A. This system provides a potential vehicle for importing diverse proteins into the cytosol of mammalian cells.  相似文献   

3.
Pseudomonas exotoxin A is composed of three structural domains that mediate cell recognition (I), membrane translocation (II), and ADP-ribosylation (III). Within the cell, the toxin is cleaved within domain II to produce a 37-kDa carboxyl-terminal fragment, containing amino acids 280-613, which is translocated to the cytosol and causes cell death. In this study, we constructed a mutant protein (PE37), composed of amino acids 280-613 of Pseudomonas exotoxin A, which does not require proteolysis to translocate. PE37 was targeted specifically to cells with epidermal growth factor receptors by inserting transforming growth factor-alpha (TGF-alpha) after amino acid 607 near the carboxyl terminus of Pseudomonas exotoxin A. PE37/TGF-alpha was very cytotoxic to cells with epidermal growth factor receptors. It was severalfold more cytotoxic than a derivative of full-length Pseudomonas exotoxin A containing TGF-alpha in the same position, probably because the latter requires intracellular proteolytic processing to exhibit its cytotoxicity, and proteolytic processing is not 100% efficient. Deletion of 2, 4, or 7 amino acids from the amino terminus of PE37/TGF-alpha greatly diminished cytotoxic activity, indicating the need for a proper amino-terminal sequence. In addition, a mutant containing an internal deletion of amino acids 314-380 was minimally active, indicating that other regions of domain II are also required for the cytotoxic activity of Pseudomonas exotoxin A.  相似文献   

4.
Pseudomonas exotoxin (PE) is a potent cytotoxic agent that is composed of 613 amino acids arranged into three major domains. We have previously identified two positions where ligands can successfully be placed in PE to direct it to cells with specific surface receptors. One site is at the amino terminus and the other is close to but not at the C-terminus. To examine the possibility of constructing oncotoxins with two different recognition elements that will bind to two different receptors, we have placed cDNAs encoding either transforming growth factor alpha (TGF alpha) or interleukin 6 (IL6) at the 5' end of a PE gene and also inserted a cDNA encoding TGF alpha near the 3' end of the PE gene. The plasmids encoding these chimeric toxins were expressed in Escherichia coli and the chimeric proteins purified to near homogeneity. In all the new toxins, the TGF alpha near the C-terminus was inserted after amino acid 607 of PE and followed by amino acids 604-613 so that the correct PE C-terminus (REDLK) was preserved. For each chimera, the toxin portion was either PE4E, in which the cell binding domain (domain Ia) is mutated, PE40, in which domain Ia is deleted, or PE38, in which domain Ia and part of domain Ib are deleted. These derivatives of PE do not bind to the PE receptor and allow 607, 355, or 339 amino acids, respectively, between the two ligands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A cDNA encoding transforming growth factor type alpha (TGF alpha) was fused to the 5' end of a gene encoding a modified form of Pseudomonas exotoxin A (PE), which is devoid of the cell recognition domain (domain Ia). The chimeric molecule, termed TGF alpha-PE40, was expressed in Escherichia coli and isolated from the periplasm or inclusion bodies depending on the construction expressed. TGF alpha-PE40 was found to be extremely cytotoxic to cells displaying epidermal growth factor (EGF) receptors. Comparison with a similar molecule in which TGF alpha was placed at the carboxyl end of PE40 demonstrated the importance of the position of the cell recognition element; TGF alpha-PE40 was found to be about 30-fold more cytotoxic to cells bearing EGF receptors than PE40-TGF alpha. In addition, TGF alpha-PE40 was shown to be extremely cytotoxic to a variety of cancer cell lines including liver, ovarian, and colon cancer cell lines, indicating high levels of EGF receptor expression in these cells.  相似文献   

6.
TGF alpha-PE40 is a chimeric toxin made by replacing domain Ia of Pseudomonas exotoxin (PE) with transforming growth factor alpha (TGF alpha). We have now replaced a portion of domain Ib of PE with different polypeptides or an extra domain III of PE in transforming growth factor alpha-PE40 and maintained cell killing. Thus, TGF alpha-PE40 can be used to transport foreign protein sequences into the cytosol of cells.  相似文献   

7.
Conventional immunotoxins and chimeric toxins made in bacteria are directed to only one receptor or antigen on target cells. In this report we describe the construction of a chimeric molecule TGF alpha-anti Tac(Fv)-PE40 which is composed of human transforming growth factor type alpha attached to anti-Tac(Fv) which is in turn attached to PE40, a form of pseudomonas exotoxin, devoid of its cell recognition domain. TGF alpha-anti-Tac(Fv)-PE40 is a bifunctional toxin that is produced in E. coli and is active on cells bearing either IL2 or EGF receptors.  相似文献   

8.
Tumor‐targeted Salmonella VNP20009 preferentially replicate within tumor tissue and partially suppress tumor growth in murine tumor models. These Salmonella have the ability to locally induce apoptosis when they are in direct contact with cancer cells but they lack significant bystander killing, which may correlate with their overall lack of antitumor activity in human clinical studies. In order to compensate for this deficiency without enhancing overall toxicity, we engineered the bacteria to express epidermal growth factor receptor (EGFR)‐targeted cytotoxic proteins that are released into the extracellular milieu. In this study, we demonstrate the ability of the Salmonella strain VNP20009 to produce three different forms of the Pseudomonas exotoxin A (ToxA) chimeric with a tumor growth factor alpha (TGFα) which results in its producing culture supernatants that are cytotoxic and induce apoptosis in EGFR positive cancer cells as measured by the tetrazolium dye reduction, and Rhodamine 123 and JC‐10 mitochondrial depolarization assays. In addition, exchange of the ToxA REDLK endoplasmic reticulum retention signal for KDEL and co‐expression of the ColE3 lysis protein resulted in an overall increased cytotoxicity compared to the wild type toxin. This approach has the potential to significantly enhance the antitumor activity of VNP20009 while maintaining its previously established safety profile. Biotechnol. Bioeng. 2016;113: 2698–2711. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.  相似文献   

9.
Anti-Tac(Fv)-PE40 is a chimeric single chain immunotoxin in which anti-Tac variable heavy and light chains held together by a peptide linker are attached to PE40, a truncated form of Pseudomonas exotoxin. This molecule was shown to be extremely cytotoxic for interleukin 2 (IL2) receptor bearing cells in tissue culture (Chaudhary, V. K., Queen, C., Junghans, R. P., Waldmann, T. A., FitzGerald, D. J., and Pastan, I. (1989) Nature 339, 394-397). Here we describe various forms of anti-Tac(Fv)-PE40 protein in which the order of the variable domains of anti-Tac has been switched and also three different types of peptide linkers have been used. All these proteins were purified to near homogeneity and were found to have similar cytotoxic activities against various human cells expressing the p55 subunit of the IL2 receptor. Anti-Tac(Fv)-PE40 was also found to have a very potent suppressive activity against phytohemagglutinin-activated human lymphoblasts and in a human mixed lymphocyte reaction. Anti-Tac(Fv)-PE40 appeared in the blood rapidly in mice after intraperitoneal administration and could be detected in the blood for up to 8 h. Anti-Tac(Fv)-PE40 warrants evaluation as an anti-tumor and immunosuppressive agent in humans.  相似文献   

10.
After binding to the eukaryotic cell surface, cholera toxin undergoes retrograde transport to the endoplasmic reticulum. The catalytic A1 polypeptide of cholera toxin (CTA1) then crosses the endoplasmic reticulum membrane and enters the cytosol in a process that may involve the quality control mechanism known as endoplasmic reticulum-associated degradation. Other toxins such as Pseudomonas exotoxin A and ricin are also thought to exploit endoplasmic reticulum-associated degradation for entry into the cytosol. To test this model, we mutagenized Chinese hamster ovary cells and selected clones that survived a prolonged coincubation with Pseudomonas exotoxin A and ricin. These lethal endoplasmic reticulum-translocating toxins bind different surface receptors and target different cytosolic substrates, so resistance to both would likely result from disruption of a shared trafficking or translocation event. Here we characterize two Pseudomonas exotoxin A/ricin-resistant clones that exhibited increased endoplasmic reticulum-associated degradation. Both clones acquired the following unselected traits: (i) resistance to cholera toxin; (ii) increased degradation of an endoplasmic reticulum-localized CTA1 construct; (iii) increased degradation of an established endoplasmic reticulum-associated degradation substrate, the Z variant of alpha1-antitrypsin (alpha1AT-Z); and (iv) reduced secretion of both alpha1AT-Z and the transport-competent protein alpha1AT-M. Proteosome inhibition partially rescued the alpha1AT-M secretion deficiencies. However, the mutant clones did not exhibit increased proteosomal activity against cytosolic proteins, including a second CTA1 construct that was expressed in the cytosol rather than in the endoplasmic reticulum. These results suggested that accelerated endoplasmic reticulum-associated degradation in the mutant clones produced a cholera toxin/Pseudomonas exotoxin A/ricin-resistant phenotype by increasing the coupling efficiency between toxin translocation and toxin degradation.  相似文献   

11.
Mik-beta 1 is a mAb that binds to the beta subunit of the IL-2R. We have constructed a recombinant single chain immunotoxin Mik-beta 1(Fv)-PE40 by genetically fusing the H and L V domains of Mik-beta 1 to each other via a peptide linker, and then to PE40, a derivative of Pseudomonas exotoxin. Mik-beta 1(Fv)-PE40 was selectively cytotoxic for cells expressing high levels of IL-2R beta (p75) subunit. Mik-beta 1(Fv)-PE40 was cytotoxic to the NK cell line YT-S, which expresses p75 but not p55 subunits, with an IC50 of 6 ng/ml. The ATL line HUT-102 was less sensitive, with an IC50 of 200 ng/ml. However, the IC50 could be lowered to 11 ng/ml when Mik-beta 1(Fv)-PE40 was allowed to bind to HUT-102 cells at 4 degrees C for 4 h before overnight incubation at 37 degrees C. An excess of Mik-beta 1 but not of anti-Tac, the anti-p55 mAb, prevented the cytotoxicity of Mik-beta 1(Fv)-PE40. We constructed a more active version of Mik-beta 1(Fv)-PE40, designated Mik-beta 1(Fv)-PE40KDEL, by converting the carboxyl-terminus of the toxin from -REDLK to -KDEL. Mik-beta 1(Fv)-PE40KDEL showed an IC50 of 2 ng/ml toward YT-S cells and 35 ng/ml toward HUT-102 cells. Binding studies using radioiodinated Mik-beta 1 showed that Mik-beta 1(Fv)-PE40 bound to the p75 receptor subunit with 11% of the affinity of the native Mik-beta 1 antibody. Mik-beta 1(Fv)-PE40 may be a useful reagent to study cells that express IL-2R, and it deserves further study as a possible treatment for cancers in which the malignant cells express high numbers of p75 subunit.  相似文献   

12.
The COOH-terminal sequence KDEL has been shown to be essential for the retention of several proteins in the lumen of the endoplasmic reticulum (Munro S., and Pelham, H. R. B. (1987) Cell 48, 899-907; Pelham, H. R. B. (1988) EMBO J. 7, 913-918; Mazzarella; R. A., Srinivasan, M., Haugejorden, S. M., and Green, M. (1990) J. Biol. Chem. 265, 1092-1101). We have previously demonstrated that variants to the KDEL retention signal, particularly at the initial two positions of the tetrapeptide, can be made without affecting its ability to direct intracellular retention when appended to the neuropeptide Y precursor (pro-NPY) (Andres, D. A., Dickerson, I. M., and Dixon, J. E. (1990) J. Biol. Chem. 265, 5952-5955). To further investigate the nature of the KDEL retention signal, oligonucleotide-directed mutagenesis and transfection was used to generate stable mouse anterior pituitary AtT-20 cell lines expressing pro-NPY mutants with variants of the KDEL sequence added to their direct carboxyl terminus. Analyses of dibasic processing and indirect immunofluorescent microscopy of AtT-20 subclones were consistent with the retention of the pro-NPY mutants bearing the COOH-terminal extensions QDEL, KEDL, or KDEI within the endoplasmic reticulum. A change in the final amino acid of the tetrapeptide from Leu to Val abolished retention completely, and the peptide hormone was processed and secreted. These results indicate that only a limited number of conservative changes can be made to the final two positions of the tetrapeptide without abolishing activity and suggest a highly specific interaction of the retention signal and the KDEL receptor.  相似文献   

13.
Two single-chain immunotoxins directed at the human transferrin receptor have been constructed by using polymerase chain reaction-based methods. Anti-TFR(Fv)-PE40 is encoded by a gene fusion between the DNA sequence encoding the antigen-binding portion (Fv) of a monoclonal antibody directed at the human transferrin receptor and that encoding a 40,000-molecular-weight fragment of Pseudomonas exotoxin (PE40). The other fusion protein, DT388-anti-TFR(Fv), is encoded by a gene fusion between the DNA encoding a truncated form of diphtheria toxin and that encoding the antigen-binding portion of antibody to human transferrin receptor. These gene fusions were expressed in Escherichia coli, and fusion proteins were purified by conventional chromatography techniques to near homogeneity. In anti-TFR(Fv)-PE40, the antigen-binding portion is placed at the amino terminus of the toxin, while in DT388-anti-TFR(Fv), it is at the carboxyl end of the toxin. Both these single-chain immunotoxins kill cells bearing the human transferrin receptors. However, anti-TFR(Fv)-PE40 was usually more active than DT388-anti-TFR(Fv), and in some cases it was several-hundred-fold more active. Anti-TFR(Fv)-PE40 was also more active on cell lines than a conjugate made by chemically coupling the native antibody to PE40, and in some cases it was more than 100-fold more active.  相似文献   

14.
A C-terminal signal prevents secretion of luminal ER proteins   总被引:260,自引:0,他引:260  
S Munro  H R Pelham 《Cell》1987,48(5):899-907
Proteins that permanently reside in the lumen of the endoplasmic reticulum (ER) must somehow be distinguished from newly synthesized secretory proteins, which pass through this compartment on their way out of the cell. Three luminal ER proteins whose sequence is known, grp78 ("BiP"), grp94, and protein disulphide isomerase, share the carboxy-terminal sequence Lys-Asp-Glu-Leu (KDEL). We show that deletion (or extension) of the carboxyl terminus of grp78 results in secretion of this protein when it is expressed in COS cells. Conversely, a derivative of chicken lysozyme containing the last six amino acids of grp78 fails to be secreted and instead accumulates in the ER. We propose that the KDEL sequence marks proteins that are to be retained in the ER and discuss possible retention mechanisms.  相似文献   

15.
The ADP-ribosylation domain of Pseudomonas exotoxin A (PE) has been identified to reside in structural domain III (residues 405-613) and a portion of domain Ib (residues 385-404) of the molecule (Hwang, J., FitzGerald, D. J., Adhya, S., and Pastan, I. (1987) Cell 48, 129-136). To further determine the carboxyl end region essential for ADP-ribosylation activity, we constructed sequential deletions at the carboxyl-terminal of PE. Our results show that a clone with a deletion of the carboxyl-terminal amino acid residues from Arg-609 to Lys-613 and replaced with Arg-Asn retained wild-type PE ADP-ribosylation activity. Deletion of the terminal amino acid residues from Ala-596 to Lys-613 and replaced with Val-Ile-Asn reduced ADP-ribosylation activity by 75%, while deletions of 36 or more amino acids from the carboxyl terminus completely lose their ADP-ribosylation activity. These modified PEs were also examined for their ability to block PE cytotoxicity. Our results shown that modified PEs which lost their ADP-ribosylation activity correspondingly lost their cytotoxicity. Furthermore, extracts containing PE fragments without ADP-ribosylation activity were able to block the cytotoxic activity of intact PE. Our results thus indicate that carboxyl-terminal amino acids in the Ser-595 region are crucial for ADP-ribosylation activity and, consequently, cytotoxicity of PE. The modified PEs which have lost their ADP-ribosylation activity may also be a route to new PE vaccines.  相似文献   

16.
Immunotoxins are antibody–toxin fusion proteins under development as cancer therapeutics. In early clinical trials, immunotoxins constructed with domains II and III of Pseudomonas exotoxin (termed PE38), have produced a high rate of complete remissions in Hairy Cell Leukemia and objective responses in other malignancies. Cholera exotoxin (also known as cholix toxin) has a very similar three-dimensional structure to Pseudomonas exotoxin (PE) and when domains II and III of each are compared at the primary sequence level, they are 36% identical and 50% similar. Here we report on the construction and activity of an immunotoxin made with domains II and III of cholera exotoxin (here termed CET40). In cell viability assays, the CET40 immunotoxin was equipotent to tenfold less active compared to a PE-based immunotoxin made with the same single-chain Fv. A major limitation of toxin-based immunotoxins is the development of neutralizing antibodies to the toxin portion of the immunotoxin. Because of structure and sequence similarities, we evaluated a CET40 immunotoxin for the presence of PE-related epitopes. In western blots, three-of-three anti-PE antibody preparations failed to react with the CET40 immunotoxin. More importantly, in neutralization studies neither these antibodies nor those from patients with neutralizing titers to PE38, neutralized the CET40-immunotoxin. We propose that the use of modular components such as antibody Fvs and toxin domains will allow a greater flexibility in how these agents are designed and deployed including the sequential administration of a second immunotoxin after patients have developed neutralizing antibodies to the first.  相似文献   

17.
Pseudomonas exotoxin (PE) contains 613 amino acids that are arranged into 3 structural domains. PE exerts its cell-killing effects in a series of steps initiated by binding to the cell surface and internalization into endocytic vesicles. The toxin is then cleaved within domain II near arginine-279, generating a C-terminal 37-kDa fragment that is translocated into the cytosol where it ADP-ribosylates elongation factor 2 and arrests protein synthesis. In this study, we have focused on the functions of PE which are encoded by domain II. We have used the chimeric toxin TGF alpha-PE40 to deliver the toxin's ADP-ribosylating activity to the cell cytosol. Deletion analysis revealed that sequences from 253 to 345 were essential for toxicity but sequences from 346 to 364 were dispensable. Additional point mutants were constructed which identified amino acids 339 and 343 as important residues while amino acids 344 and 345 could be altered without loss of cytotoxic activity. Our data support the idea that domain II functions by first allowing PE to be processed to a 37-kDa fragment and then key sequences such as those identified in this study mediate the translocation of ADP-ribosylation activity to the cytosol.  相似文献   

18.
19.
Functional analysis of domains II, Ib, and III of Pseudomonas exotoxin   总被引:24,自引:0,他引:24  
Pseudomonas exotoxin is composed of three structural domains that are responsible for cell recognition, membrane translocation, and ADP-ribosylation. The substitution of the cell recognition domain (domain Ia) with a growth factor such as transforming growth factor alpha (TGF alpha), creates a cell-specific cytotoxic agent, TGF alpha-PE40, which kills cells bearing epidermal growth factor (EGF) receptors. We have used TGF alpha-PE40 to define the role of sequences in domains II, Ib, and III. Various mutations were made in these domains and mutant forms of TGF alpha-PE40 expressed in Escherichia coli. Mutant proteins were then tested for their ADP-ribosylation, EGF receptor-binding, and cell-killing activities. Additionally, the amino boundary of domain III, which contains the ADP-ribosylation activity, was determined by deletion analysis. Data indicate that (i) the functional amino terminus of domain III is near amino acid 400; (ii) deletion of various regions in domain II or conversion of cysteines 265 and 268 to serines results in a loss of cytotoxicity which ranged from 10-fold to more than 150-fold, indicating that domain II is essential for full expression of cytotoxicity; (iii) deletion of the amino terminus of domain Ib results in a molecule with somewhat increased cytotoxic activity, indicating that domain Ib is not essential for the cytotoxic effect of TGF alpha-PE40; and (iv) TGF alpha-PE40, produced by denaturing and refolding of insoluble material from inclusion bodies, binds better to EGF receptors and is about 10-fold more cytotoxic to cells bearing EGF receptors than is the secreted form of soluble TGF alpha-PE40.  相似文献   

20.
以抗癌胚抗原(Carcinoembryonic antigen, CEA)单链抗体与假单胞菌外毒素(Pseudomonas exotoxin A, PEA)的截短和修饰形式PE38/KDEL构建重组免疫毒素CEA/PE38/KDEL,并在大肠杆菌菌株BL21(DE3)-star中表达。采用镍离子螯合层析法纯化变性的包涵体样品,并用连续梯度透析的方法对纯化后的包涵体进行复性。采用流式细胞术鉴定复性产物与靶细胞的结合活性,结果表明免疫毒素CEA/PE38/KDEL具有与靶细胞特异性结合的活性。以MTT法检测免疫毒素对肿瘤细胞的体外杀伤活性,结果表明该免疫毒素对SW1116和CNE_2细胞具有特异性杀伤活性。证明了经包涵体复性的抗CEA免疫毒素CEA/PE38/KDEL对表达CEA抗原的肿瘤细胞具有良好的结合和杀伤活性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号