首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both the maternal and fetal somatotrophic axes are closely linked to fetal substrate supply. Nutritional insults at critical stages of fetal development may lead to permanent reprogramming of the relationships between these factors. The consequences of reprogramming during fetal life may be harmful to metabolic, endocrine and cardiovascular homoeostatic mechanisms in postnatal life. The exact mechanisms that lead to reprogramming during fetal life need thorough investigation before effective strategies to deal with this problem can be devised.  相似文献   

2.
Much of life‐history theory rests on fundamental assumptions about constraints on the acquisition and allocation of energy to growth and reproduction. In general, the allocation of energy to reproduction depends on maternal size, which in turn depends on environmental factors experienced throughout the life of the mother. Here, we used phylogenetic path analyses to evaluate competing hypotheses about the environmental and maternal drivers of reproductive traits in lizards. In doing so, we discovered that precipitation, rather than temperature, has shaped the evolution of the life history. Specifically, environments with greater rainfall have enabled the evolution of larger maternal size. In turn, these larger mothers produce larger clutches of larger offspring. However, annual precipitation has a negative direct effect on offspring size, despite the positive indirect effect mediated by maternal size. Possibly, the evolution of offspring size was driven by the need to conserve water in dry environments, because small organisms are particularly sensitive to water loss. Since we found that body size variation among lizards is related to a combination of climatic factors, mainly precipitation and perhaps primary production, our study challenges previous generalizations (e.g., temperature‐size rule and Bergmann''s rule) and suggests alternative mechanisms underlying the evolution of body size.  相似文献   

3.
4.
Studies in rodents have shown that, during pregnancy, maternal stress from restraint, noise, light, and heat among other factors may be associated with adverse effects on embryo/fetal and postnatal development. Moreover, it is also well known that exposure to certain metal levels during gestation can also cause maternal and developmental toxicity. Because potentially, pregnant women may be concurrently exposed to metals and various types of stress, the influence of maternal stress on the metal-induced adverse pre-and postnatal effects has been investigated for a number of elements. This influence is reviewed here. It is concluded that maternal stress enhances the metal-induced embryo/fetal and developmental toxicity only at doses of the metal which are also clearly toxic to the dam.  相似文献   

5.
6.
It has been reported that mouse pups bearing a newly identified mutation, eyelids open at birth (eob), as a homozygous condition often die within 7 days after birth although they have no external malformations other than open eyelids. We sought to determine what factors influence the viability of eob pups by performing a cross-fostering experiment using NC and NC-eob mice which are co-isogenic with each other. Viability indices of NC pups during days 0 to 7 of lactation were approximately 95% or more when they were fostered by either NC or eob mothers. However, the viability indices of eob pups were reduced to 87.3% and 36.7% when they were fostered by NC and eob mothers, respectively. Body weight gains of both NC and eob pups were slightly inhibited during the entire lactation period when they were fostered by eob mothers. In a second experiment, eob mothers were examined for milk-yielding capability and the fetuses examined for the presence of congenital visceral and skeletal malformations. Neither decreased amounts of suckled milk nor malformations were observed. Based on these results, we concluded that a remarkably high mortality of eob pups would be caused only when weak lethal factors in eob pups were combined with the slightly depressed pup-rearing capability in eob mothers.  相似文献   

7.
Wolf JB  Leamy LJ  Roseman CC  Cheverud JM 《Genetics》2011,189(3):1069-1082
Mothers are often the most important determinant of traits expressed by their offspring. These "maternal effects" (MEs) are especially crucial in early development, but can also persist into adulthood. They have been shown to play a role in a diversity of evolutionary and ecological processes, especially when genetically based. Although the importance of MEs is becoming widely appreciated, we know little about their underlying genetic basis. We address the dearth of genetic data by providing a simple approach, using combined genotype information from parents and offspring, to identify "maternal genetic effects" (MGEs) contributing to natural variation in complex traits. Combined with experimental cross-fostering, our approach also allows for the separation of pre- and postnatal MGEs, providing rare insights into prenatal effects. Applying this approach to an experimental mouse population, we identified 13 ME loci affecting body weight, most of which (12/13) exhibited prenatal effects, and nearly half (6/13) exhibiting postnatal effects. MGEs contributed more to variation in body weight than the direct effects of the offsprings' own genotypes until mice reached adulthood, but continued to represent a major component of variation through adulthood. Prenatal effects always contributed more variation than postnatal effects, especially for those effects that persisted into adulthood. These results suggest that MGEs may be an important component of genetic architecture that is generally overlooked in studies focused on direct mapping from genotype to phenotype. Our approach can be used in both experimental and natural populations, providing a widely practicable means of expanding our understanding of MGEs.  相似文献   

8.
When females mate with multiple partners within a single reproductive cycle, sperm from rival males may compete for fertilization of a limited number of ova, and females may bias the fertilization of their ova by particular sperm. Over evolutionary timescales, these two forms of selection shape both male and female reproductive physiology when females mate multiply, yet in monogamous systems, post-copulatory sexual selection is weak or absent. Here, we examine how divergent mating strategies within a genus of closely related mice, Peromyscus, have shaped the evolution of reproductive traits. We show that in promiscuous species, males exhibit traits associated with increased sperm production and sperm swimming performance, and females exhibit traits that are predicted to limit sperm access to their ova including increased oviduct length and a larger cumulus cell mass surrounding the ova, compared to monogamous species. Importantly, we found that across species, oviduct length and cumulus cell density are significantly correlated with sperm velocity, but not sperm count or relative testes size, suggesting that these female traits may have coevolved with increased sperm quality rather than quantity. Taken together, our results highlight how male and female traits evolve in concert and respond to changes in the level of post-copulatory sexual selection.  相似文献   

9.
This study aims to analyze, in mice, the long-term effects of delayed fatherhood on postnatal development, spontaneous motor activity, and learning capacity of offspring. Hybrid parental-generation (F(0)) males, at the age of 12, 70, 100, and 120 wk, were individually housed with a randomly selected 12-wk-old hybrid female. The resulting first-generation (F(1)) offspring were tested for several developmental and behavioral variables. Cumulative percentage of F(1) pups that attained immediate righting in the 120-wk group was lower than that found in the 12-, 70-, and 100-wk groups. Furthermore, the postnatal day of attaining immediate righting was higher in pups from the 120-wk group when compared to pups from the other age-groups. At the age of 20 wk, F(1) offspring from the 120-wk group displayed lower counts of motor activity than offspring from the 12-, 70-, and 100-wk groups. One week later, a higher percentage of offspring from the 100- and 120-wk groups entered the dark compartment during the retention trial of the passive-avoidance test when compared to offspring from the 12-wk group. Offspring from the 120-wk group exhibited also lower step-through latency in the retention trial than offspring from the 12-, 70-, and 100-wk groups. These results show that advanced paternal age at conception has long-term effects on preweaning development, spontaneous motor activity, and reduced passive-avoidance learning capacity of mouse offspring.  相似文献   

10.
Effect of maternal restraint stress on fetal development of ICR mice.   总被引:1,自引:0,他引:1  
The present study was conducted to elucidate the susceptibility of embryos and fetuses at different gestational stages to the maternal stress in mice. Groups of pregnant ICR mice were subjected to daily 12-h restraint stress, taped in the supine position on a plastic board, on gestational days (GD) 1-4, 5-8, 9-12 and 13-16, respectively. Caesarean sections were performed on gestational day 18, and the fetuses were weighed and examined for morphological defects. During the daily restraint for 4 days, the maternal body weights markedly decreased. Although the body weights recovered gradually after termination of the stress, the recovery was not full until the final stage of pregnancy. Interestingly, restraint stress caused growth retardation of the fetuses, leading to a significant decrease in their body weights, and increased early and late resorptions of embryos and fetuses according to the stress periods. Although the preceding (GD1-4) and concurrent (GD5-8) stresses did not affect embryonic implantation, restraint stress on GD9-12 caused cleft palate. Whereas vertebral abnormalities, mainly bipartite ossification, were observed only in animals stressed on GD5-8, abnormalities of sternebrae, exhibiting asymmetric or bipartite ossification, were enhanced by the stress at all of the gestational stages. On the other hand, the incidence of other malformations including renal malposition and costal abnormalities was not increased by stress at any of the 4 stages. Taken together, the results suggest that intensive restraint stress influences the maternal body weight resulting in growth retardation and increased mortality of embryos and fetuses, in addition to gestational stage-specific ventricular dilatation, cleft palate and sternal abnormalities.  相似文献   

11.
Studies in rodents have shown that, during pregnancy, maternal stress from restraint, noise, light, and heat among other factors may be associated with adverse effects on embryo/fetal and postnatal development. Moreover, it is also well known that exposure to certain metal levels during gestation can also cause maternal and developmental toxicity. Because potentially, pregnant women may be concurrently exposed to metals and various types of stress, the influence of maternal stress on the metal-induced adverse pre- and postnatal effects has been investigated for a number of elements. This influence is reviewed here. It is concluded that maternal stress enhances the metal-induced embryo/fetal and developmental toxicity only at doses of the metal which are also clearly toxic to the dam.  相似文献   

12.
Describing natural selection on phenotypic traits under varying environmental conditions is essential for a quantitative assessment of the scale at which adaptation might occur and of the impact of environmental variability on evolution. Here we analyzed patterns of multivariate selection via fecundity and viability on three reproductive traits (laying date, clutch size, and egg weight) in a population of great tits (Parus major). We quantified selection under different environmental conditions using (1) local variation in breeding density and (2) distinct areas of the population's habitat. We found that selection gradients were generally stronger for fecundity than for viability selection. We also found correlational selection acting on the combination of laying date and clutch size; this is the first documented evidence of such selection acting on these two traits in a passerine bird. Our analyses showed that both local breeding density and habitat significantly influenced selection patterns, hence favoring different patterns of reproductive investment at a small-scale relative to typical dispersal distances in this species. Canonical rotation of the nonlinear selection matrices yielded similar conclusions as traditional nonlinear selection analyses, and also showed that the main axes of selection and fitness surfaces varied over space within the population. Our results emphasize the importance of quantifying different forms of selection, and of including variation in environmental conditions at small scales to gain a better understanding of potential evolutionary dynamics in wild populations. This study suggests that the fitness landscape for this species is relatively rugged at scales relevant to the life histories of individual birds and their close relatives.  相似文献   

13.
Recent studies on mammals investigating parent-of-origin-specific effects such as genomic imprinting and maternal effects have demonstrated their impact on short-term measures of fitness, for example offspring growth. However, the long-term fitness consequences of parent-of-origin-specific effects and their role outside the immediate mother-offspring interaction remain largely unexplored. Here, we show that female mice mated to males that inherited the same set of paternal and maternal genes as themselves have a higher reproductive success than females mated to males of reciprocal genotype. Furthermore, we demonstrate that the early social environment experienced by an individual influences its reproductive success. Females raised with unrelated siblings in a mixed litter had a subsequent lower reproductive success than those that were fostered together with all their biological siblings in unmixed litters. Our results highlight the important influence of parent-of-origin-specific effects and conditions in early development on long-term reproductive success in mammals and suggest that parent-of-origin-specific effects may provide the underlying mechanism for beneficial coadaptation between genotypes, for example, in mate choice.  相似文献   

14.
We determined the polymorphism C242T of the aromatase gene (Cyp19) and its allelic frequency, as well as the effect of the variants on productive and reproductive traits in 71 purebred Santa Inês sheep, 13 purebred Brazilian Somali sheep, nine purebred Poll Dorset sheep, and 18 crossbred 1/2 Dorper sheep. The animals were genotyped using the PCR-RFLP technique. The influence of the animal's genotype on its performance or on the performance of its lambs was analyzed by the least square method. Another factor assessed was the importance of the animal's genotype in analysis models for quantitative breeding value estimates, and whether there were differences among the averages of breeding values of animals with different genotypes for this gene. In the sample studied, no AA individuals were observed; the AB and BB frequencies were 0.64 and 0.36, respectively. All Brazilian Somali sheep were of genotype BB. All 1/2 Dorper BB animals presented a lower age at first lambing, and the Santa Inês BB ewes presented a lower lambing interval. In these same genetic groups, AB ewes presented higher litter weight at weaning. This is evidence that BB ewes have a better reproductive performance phenotype, whereas AB ewes present a better maternal ability phenotype. However, in general, animals with genotype AB presented better average breeding values than those with genotype BB.  相似文献   

15.
16.
The indirect genetic effects of fathers on the expression and evolution of female reproductive traits in the wild is not well understood. In a wild population of great tits (Parus major), Evans et al. estimated the genetic and nongenetic effects of male mates on two female reproductive traits, lay date and clutch size. The estimated heritability of lay date (but not of clutch size) was increased by 1.5 times after accounting for male indirect genetic effects. This finding illustrates the importance of considering the effects of social partners in classic quantitative genetic models.  相似文献   

17.
1. Conservation biologists are concerned about the interactive effects of environmental stress and inbreeding because such interactions could affect the dynamics and extinction risk of small and isolated populations, but few studies have tested for these interactions in nature. 2. We used data from the long-term population study of song sparrows Melospiza melodia on Mandarte Island to examine the joint effects of inbreeding and environmental stress on four fitness traits that are known to be affected by the inbreeding level of adult birds: hatching success, laying date, male mating success and fledgling survival. 3. We found that inbreeding depression interacted with environmental stress to reduce hatching success in the nests of inbred females during periods of rain. 4. For laying date, we found equivocal support for an interaction between parental inbreeding and environmental stress. In this case, however, inbred females experienced less inbreeding depression in more stressful, cooler years. 5. For two other traits, we found no evidence that the strength of inbreeding depression varied with environmental stress. First, mated males fathered fewer nests per season if inbred or if the ratio of males to females in the population was high, but inbreeding depression did not depend on sex ratio. Second, fledglings survived poorly during rainy periods and if their father was inbred, but the effects of paternal inbreeding and rain did not interact. 6. Thus, even for a single species, interactions between the inbreeding level and environmental stress may not occur in all traits affected by inbreeding depression, and interactions that do occur will not always act synergistically to further decrease fitness.  相似文献   

18.
Summary The effects of different doses of various steroids on growth, and on costal and epiphyseal chondrocytes, have been studied in prenatal, immature, and adult Long-Evans rats using histochemical techniques, and both light and electron microscopy. Both prenatal and postnatal treatments have been employed. The steroids used were cortisone (CA), betamethasome (BM), and, in the prenatal group only, dexamethasone (DM).Body weight is reduced in all treated rats (except the low dose of CA) by day 17 of gestation, with greater weight reductions occurring in rats receiving the higher dose level of each steroid. In rats treated prenatally or neonatally, and sacrificed postnatally on days 39–43 or days 116–127, body weights, and tibial and tail lengths, are less than in correspondingly aged controls, thus showing a persistence of the effects of treatment.Costal and epiphyseal cartilages in prenatal rats show cellular, synthetic, and ultrastructural alterations induced by treatment with glucocorticoids but the responses are not necessarily comparable. Except for the low dose of DM, the higher doses of each steroid are more effective in inhibiting, or altering, growth and cellular differentiation in the developing fetuses. Surprisingly, a low dose of DM has a more devastating effect on the cells and extracellular matrix of both costal and epiphyseal cartilage, than do higher dose-levels of the various steroids. Low doses of CA and BM are also effective in inhibiting or altering growth and cellular differentiation, but their effectiveness is largely limited to 17 days of gestation. The order of effect of the various doses of the different steroids on fetal cartilage, listed in decreasing order of severity, is as follows: 0.12 DM, 0.24 DM, 0.42 BM, 50 CA, with 25 CA and 0.18 BM being approximately equal and only slightly different from control cartilages. The effect of prenatal or neonatal glucocorticoid treatment on chondrocytes is minimal in the 30–43 day, or 116–127 day, postnatal groups. In immature and adult rats, cortisone affects the chondrocytes more deleteriously than does betamethasone, and a 5.0 mg dose of CA seems to affect chondrocytes, body weight, and tibial and tail lengths more than 0.2 or 7.5 mg doses.Supported in part by NIH grant HD 07074 and HD 12034  相似文献   

19.
In a wide variety of species, a female's age of first reproduction influences offspring size and survival, suggesting that there exists an optimal timing of reproduction. Mothers in many species also influence offspring size and survival after birth through variation in parental care. We experimentally separated these effects in the burying beetle Nicrophorus vespilloides to test for coadaptation between prenatal and postnatal maternal effects associated with age at first reproduction. Females that reproduced early produced offspring with lower birth weight. The amount of parental care depended on the age of first reproduction of the caretaker, as did the extent of offspring begging. As predicted for a coadaptation of maternal effects, prenatal and postnatal effects were opposite for different-aged mothers, and larval weight gain and survival was greatest when the age of the caretaker and birth mother matched. Thus, prenatal effects intrinsically associated with age of first reproduction can be ameliorated by innate plasticity in postnatal care. A coadaptation of prenatal and postnatal maternal effects may evolve to allow variable timing of the first reproductive attempt. Such a coadaptation might be particularly valuable when females are constrained from reproducing at an optimal age, as, for example, in species that breed on scarce and unpredictable resources.  相似文献   

20.
Effects of sex steroids on urine-marking activity were studied in male, female, and neonatally androgenized female mice. Urine marking was estimated by suspending ceramic tubes that were connected in a horizontal row with a steel rod into the home cage of an isolated mouse. Intact males showed high marking activity, which was diminished after castration. Both testosterone propionate (TP) and estradiol benzoate (EB) were effective in restoring the marking activity of castrated males, while 5-alpha-dihydrotesterone (DHT) did not have any stimulative effects. Intact normal females showed quite low marking activity and ovariectomy further depressed it. TP and DHT enhanced the marking of ovariectomized females, but EB restored the activity only to the preovariectomy level. In intact females which were neonatally androgenized, the marking activity was much higher than that of normal females. The pattern of the change induced by gonadectomy and hormone treatment in these females resembled that in males. Thus, ovariectomy reduced the activity and both TP and EB restored the level. These results indicate that the sexual dimorphism in the urine marking in mice is primarily determined by hormonal environment during early postnatal age. Hormonal control of scent marking is discussed in relation to the studies in other rodents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号