首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, it is shown how to transfer tared aliquots of (HCO3 + CO2)-containing luminal fluids directly into the mercury-sealed chamber of a modified Van Slyke apparatus and how to obtain direct as well as indirect manometric determinations of dissolved CO2 ([CO2]f) in each aliquot of such fluids. It is next shown that the pattern of in vitro luminal acidification in an isolated turtle bladder sac depends upon the prior in vivo ambient temperature to which the donor turtle had become adapted. Under in vivo conditions, the food intake, physical activity, and acid excretion of 32 degrees C-adapted turtles are greater than those of 21 degrees C or 26 degrees C-adapted turtles. Under in vitro conditions of incubating isolated bladder sacs (from 21, 26, and 32 degrees C turtles) in (HCO3 + CO2)-containing Ringer media at a single temperature (21 degrees C), the patterns of luminal acidification are as follows: (a) The rate of depletion of luminal [HCO3] is greatest in bladders from the 32 degrees C-adapted turtles. (b) Concomitant decreases in luminal [CO2]f, [HCO3], and pH (the 'CO2-decreasing patterns' of luminal acidification) develop in all bladders from 32 degrees C turtles, in half of those from 26 degrees C turtles, but in less than one-fifth of those from 21 degrees C-adapted turtles: and (c) a CO2-increasing pattern of luminal acidification is found in most of the bladders from 21 degrees C-adapted turtles. A postulated bicarbonate ion-reabsorbing pump is consistent with all of these patterns of luminal acidification.  相似文献   

2.
The bacterial flora of the large intestine was examined in 35 laboratory-reared leopard frogs (Rana pipiens) subjected to one of the following four treatments: (i) normal feeding at 21 degrees C (10 frogs); (ii) fasting for 2 weeks at 21 degrees C (8 frogs); (iii) chilling for 1 week at 4 degrees C (9 frogs); and (iv) simulated hibernation for 3 weeks at 4 degrees C (8 frogs). Bacteria from the intestinal contents and mucosa were counted microscopically and by colony counting after strictly anaerobic culturing. The predominant bacteria were isolated and partially characterized. Fasting for 2 weeks produced no significant changes in total counts or in the types of bacteria cultured. Chilling, whether rapid or in the course of simulated hibernation, was associated with a decrease in the numbers and variety of bacteria. Thus it appears that the lowering of temperature rather than the absence of food is the important factor in the reduction of bacterial flora seen in hibernating frogs. However, the bacteria showed some adaptation to the low temperature, as the longer the host had been at 4 degrees C, the higher the proportion of bacteria which could grow when cultured at that temperature.  相似文献   

3.
The bacterium Xenorhabdus sp. is symbiotically associated with the entomopathogenic nematode Steinernema riobravis. This nematode is produced in monoxenic culture with Xenorhabdus sp. and is sold as a biological insecticide. Acceptable yields in fermentors can only be achieved in the presence of vigorous growth of the bacterium. We investigated the fatty acid composition of Xenorhabdus species when grown at 15, 20, 25 or 30 degrees C on media containing one of two primary carbon sources: glucose or lipids from the insect host, Galleria mellonella. Both temperature and primary carbon source significantly affected lipid quantity and quality in Xenorhabdus sp. Bacteria grown with insect lipids as a primary carbon source accumulated more lipids with greater proportion of longer chain fatty acids than bacteria grown with glucose as a primary carbon source. Cells grown with insect lipids at 15 degrees C had a lower lipid content than cells grown on the same media at 20, 25 or 30 degrees C. Increasing growth temperature increased saturated fatty acids and decreased unsaturated fatty acids, irrespective of carbon source. We recommend addition of complex fatty acid sources that resemble natural host lipids to growth medium for mass producing entomopathogenic nematodes. This could provide nematode quality similar to in vivo-produced nematodes.  相似文献   

4.
Ejaculates were collected form three mixed-breed male dogs daily for 3 d. The semen was diluted in either a nonfat dried milk solid-glucose (NFDMS-G) or egg yolk citrate (EYC) extender at a concentration of 25 x 10(6) sperm/ml. The diluted samples were exposed to three different storage temperatures (35, 22 and 4 degrees C). Three cooling rates (-1.0, -0.3 and -0.1 degrees C/min) were also investigated at the lowest storage temperature (4 degrees C). The semen was evaluated for total motility, progressive motility and velocity at 0, 6, 12, 24, 48, 72, 96 and 120 h after collection by two independent observers. Interactions between extenders, temperatures and time after collection were found for each of the variables. Nonfat dried milk solid-glucose diluent was superior to EYC (P<0.05) in preservating sperm motility parameters that were evaluated for most of the observations. The evaluated sperm motility parameters were also significantly superior (P<0.05) in semen stored at 4 degrees C than at 35 or 22 degrees C for most of the observations. The progressive motility and velocity of sperm in semen cooled at 4 degrees C in NFDMS-G were higher (P<0.05) at the fast and medium cooling rates (-1.0 and -0.3 degrees C) than at the slow cooling rate (-0.1 degrees C/min) at 24 and 72 h, and at 48 h, respectively. In conclusion, the present study suggests that canine spermatozoal motility is well preserved when a NFDMS-glucose extender is added to the semen and the semen is cooled at a medium or fast rate to a storage temperature of 4 degrees C. Additional studies are needed to evaluate the fertility of semen stored in this manner.  相似文献   

5.
Two experiments were conducted to examine the effects of cooling rate and storage temperature on motility parameters of stallion spermatozoa. In Experiment 1, specific cooling rates to be used in Experiment 2 were established. In Experiment 2, three ejaculates from each of two stallions were diluted to 25 x 10(6) sperm/ml with 37 degrees C nonfat dry skim milk-glucose-penicillin-streptomycin seminal extender, then assigned to one of five treatments: 1) storage at 37 degrees C, 2) storage at 25 degrees C, 3) slow cooling rate to and storage at 4 degrees C, 4) moderate cooling rate to and storage at 4 degrees C, and 5) fast cooling rate to and storage at 4 degrees C. Total spermatozoal motility (TSM), progressive spermatozoal motility (PSM), and spermatozoal velocity (SV) were estimated at 6, 12, 24, 48, 72, 96 and 120 h postejaculation. The longevity of spermatozoal motility was greatly reduced when spermatozoa were stored at 37 degrees C as compared to lower spermatozoal storage temperatures. At 6 h postejaculation, TSM values (mean % +/- SEM) of semen stored at 37 degrees C, slowly cooled to and stored at 25 degrees C or slowly cooled to and stored at 4 degrees C were 5.4 +/- 1.1, 79.8 +/- 1.6, and 82.1 +/- 1.6, respectively. Mean TSM for semen that was cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a moderate rate for four of seven time periods (6, 24, 72 and 120 h), and it was greater (P<0.05) than mean TSM of semen cooled to 4 degrees C at a fast rate for five of seven time periods (6, 12, 24, 72 and 120 h). Mean TSM of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean TSM of semen cooled to 25 degrees C for five of seven time periods (24 to 120 h). A similar pattern was found for PSM. Mean SV of semen cooled to 4 degrees C at a slow rate was greater (P<0.05) than mean SV of semen cooled to 25 degrees C for all time periods. A slow cooling rate (initial cooling rate of -0.3 degrees /min) and a storage temperature of 4 degrees C appear to optimize liquid preservation of equine spermatozoal motility in vitro.  相似文献   

6.
The purpose of this study was to extend previous work on the cryopreservation of channel catfish (Ictalurus punctatus) sperm. The objectives were to compare the effects of freezing and thawing on motility of sperm for: (1) 1 or 48-h exposure before freezing to 5% methanol and use of 0.5 or 0.25 mL straws; (2) 1 h or 5-day exposure before freezing to 5% methanol; (3) cooling at 45 or 3 degrees C/min; (4) thawing at 30, 40 or 50 degrees C using 5 or 10 s duration, and (5) cryopreservation with 5 or 10% methanol of samples from 50 males to analyze male-to-male variation. No differences were found in motility reduction for 1 or 48 h exposure times in 5% methanol, for use of 0.5 or 0.25 mL straws, or for 1 h or 5-day exposures in 5% methanol. A cooling rate of 45 degrees C/min resulted in lower motility reduction (33+/-9%) than a rate of 3 degrees C/min (83+/-13%) (P=0.002). A thawing temperature of 50 degrees C resulted in lower motility reduction (25+/-14%) than 30 degrees C (51+/-21%) or 40 degrees C (59+/-11%) (P=0.001). A thawing duration of 10 s resulted in lower motility reduction (38+/-12%) than a duration of 5 s (52+/-12%) (P=0.005), and there was an interaction between thawing temperature and duration (P=0.050). A concentration of 5% methanol resulted in lower motility reduction (43+/-17%) than 10% methanol (67+/-14%) (P=0.001). Regression analysis showed no relationship between motility before freezing and after thawing for 5% methanol (r2=0.012) or 10% methanol (r2=0.011).  相似文献   

7.
Total fatty acids in the pea aphid reared at low temperatures increased significantly compared to that at high rearing temperatures. This change is reflected in a large increase of myristic acid, which occurs exclusively in triacylglycerols. When aphids were moved from 25°C to a lower rearing temperature at 10°C, saturated fatty acids accumulated over time, reaching a maximum at 16th day. When aphids were moved to 4°C, a temperature below the developmental threshold, those aphids did not accumulate saturated fatty acids. Similar results were observed when aphids were exposed to sequential decrease in rearing temperature. However, both total fatty acids and myristic acid in the aphids from the treatments of sequential decreasing rearing temperature were significantly higher compared to those in the aphids from the treatments of sudden decreasing rearing temperature. This result, therefore, supports the hypothesis that cold‐adapted aphids can survive under threshold temperature for a longer period of time than noncold‐adapted aphids. Acetyl‐CoA carboxylase activity in the aphids at 25°C was twofold higher than that in the aphids at 10°C, whereas fatty acid synthase activities in the aphids reared at 25 and 10°C are similar. Aphids reared at 10°C showed a threefold reduction in reproduction rates. This reduced production of new nymphs reduces energy demand and would allow for accumulation of energy in the form of triacylglycerols. Therefore, the increased level of saturated fatty acids in aphids reared at low temperature is probably related to lower utilization of fatty acids rather than increased rates of biosynthesis.  相似文献   

8.
Laboratory aquarium experiments demonstrated that Vibrio strain AK-1 caused rapid and extensive bleaching of the coral Oculina patagonica at 29 degrees C, slower and less-complete bleaching at 23 degrees C, and no bleaching at 16 degrees C. At 29 degrees C, the application of approximately 100 Vibrio strain AK-1 cells directly onto the coral caused 50 and 83% bleaching after 10 and 20 days, respectively. At 16 degrees C, there was no bleaching, even with an initial inoculum of 1.2 x 10 bacteria. To begin to understand the effect of seawater temperature on bleaching of O. patagonica by Vibrio strain AK-1, adhesion of the bacteria to the coral as a function of temperature was studied. Inoculation of 10Vibrio strain AK-1 organisms into flasks containing 20 ml of seawater at 25 degrees C and a fragment of O. patagonica resulted in net levels of bacterial adhesion to the coral of 45, 78, and 84% after 2, 6, and 8 h, respectively. The adhesion was inhibited 65% by 0.001% d-galactose and 94% by 0.001% methyl-beta-d-galactopyranoside (beta-M-Gal). After the incubation of Vibrio strain AK-1 with the coral for 6 h, 42% of the input bacteria were released from the coral with 0.01% beta-M-Gal, compared to less than 0.2% when beta-M-Gal was present during the adhesion step. Adhesion did not occur when Vibrio strain AK-1 was grown at 16 degrees C, regardless of whether the corals were maintained at 16 or 25 degrees C, whereas bacteria grown at 25 degrees C adhered to corals maintained at 16 or 25 degrees C. Bacteria grown at 25 degrees C adhered avidly to Sepharose beads containing covalently bound beta-d-galactopyranoside but failed to bind if grown at 16 degrees C. These data suggest that elevated seawater temperatures may cause coral bleaching by allowing for the expression of adhesin genes of Vibrio strain AK-1.  相似文献   

9.
Bacteria of the genus Exiguobacterium have been repeatedly isolated from ancient permafrost sediments of the Kolyma lowland of Northeast Eurasia. Here we report that the Siberian permafrost isolates Exiguobacterium sibiricum 255-15, E. sibiricum 7-3, Exiguobacterium undae 190-11 and E. sp. 5138, as well as Exiguobacterium antarcticum DSM 14480, isolated from a microbial mat sample of Lake Fryxell (McMurdo Dry Valleys, Antarctica), were able to grow at temperatures ranging from -6 to 40 degrees C. In comparison to cells grown at 24 degrees C, the cold-grown cells of these strains tended to be longer and wider. We also investigated the effect of growth conditions (broth or surface growth, and temperature) on cryotolerance of the Exiguobacterium strains. Bacteria grown in broth at 4 degrees C showed markedly greater survival following freeze-thawing treatments (20 repeated cycles) than bacteria grown in broth at 24 degrees C. Surprisingly, significant protection to repeated freeze-thawing was also observed when bacteria were grown on agar at either 4 or 24 degrees C.  相似文献   

10.
We investigated the temperature effects on the virulence, development, reproduction, and motility of two Korean isolates of entomopathogenic nematodes, Steinernema glaseri Dongrae strain and S. longicaudum Nonsan strain. In addition, we studied the growth and virulence of their respective symbiotic bacterium, Xenorhabdus poinarii for S. glaseri and Xenorhabdus sp. for S. longicaudum, in an insect host at different temperatures. Insects infected with the nematode-bacterium complex or the symbiotic bacterium was placed at 13 degrees C, 18 degrees C, 24 degrees C, 30 degrees C, or 35 degrees C in the dark and the various parameters were monitored. Both nematode species caused mortality at all temperatures tested, with higher mortalities occurring at temperatures between 24 degrees C and 30 degrees C. However, S. longicaudum was better adapted to cold temperatures and caused higher mortality at 18 degrees C than S. glaseri. Both nematode species developed to adult at all temperatures, but no progeny production occurred at 13 degrees C or 35 degrees C. For S. glaseri, nematode progeny production was best at inocula levels above 20 infective juveniles/host at 24 degrees C and 30 degrees C, but for S. longicaudum, progeny production was generally better at 24 degrees C. Steinernema glaseri showed the greatest motility at 30 degrees C, whereas S. longicaudum showed good motility at 24 degrees C and 30 degrees C. Both bacterial species grew at all tested temperatures, but Xenorhabdus sp. was more virulent at low temperatures (13 degrees C and 18 degrees C) than X poinarii.  相似文献   

11.
It is well known that amongst the sibling species of the Anopheles gambiae complex, A. arabiensis Patton predominates over A. gambiae sensu stricto Giles in hotter, drier parts of Africa. Here it was investigated whether A. arabiensis is better adapted to higher temperatures than A. gambiae s.s. at the microclimatic level. Bioassays were used to assess behavioural avoidance activity of adult mosquitoes in the presence of increasing temperature. Female mosquitoes were introduced into a holding tube from which they could escape into a cage through a one-way funnel. From a starting temperature of 28 degrees C they were exposed to a 2 degrees C rise in temperature every 30 min until all mosquitoes had escaped or been knocked down. As temperature increased, A. arabiensis left the holding tube at higher temperatures than A. gambiae s.s. (A. arabiensis mean activation temperature = 35.7 degrees C, 95% CIs = 35.4-36.1 degrees C; A. gambiae s.s. = 33.0 degrees C, 32.5-33.5 degrees C). To determine the relative ability of both species to survive at extremely high temperatures, batches of insects were exposed to 40 degrees C for different periods. It took considerably longer to kill 50% of A. arabiensis at 40 degrees C than it did A. gambiae s.s. (112 min vs. 67 min). These data show that adult A. arabiensis are better adapted to hotter conditions than A. gambiae s.s., a characteristic that is reflected in their spatial and temporal distribution in Africa.  相似文献   

12.
Hibernating mammals rely heavily on lipid metabolism to supply energy during hibernation. We wondered if the fatty acid binding protein from a hibernator responded to temperature differently than that from a nonhibernator. We found that the Kd for oleate of the liver fatty acid binding protein (1.5 microM) isolated from ground squirrel (Spermophilus richardsonii) was temperature insensitive over 5-37 degrees C, while the rat liver fatty acid binding protein was affected with the Kd at 37 degrees C being about half (0.8 microM) that found at lower temperatures. This same trend was observed when comparing the specificity of various fatty acids of differing chain length and degree of unsaturation for the two proteins at 5 and 37 degrees C. At the lower temperature, ground squirrel protein bound long-chain unsaturated fatty acids, particularly linoleate and linolenate, at least as well as at the higher temperature and matched requirements for these fatty acids in the diet. The most common long-chain fatty acid, palmitate, was a more effective ligand for ground squirrel liver fatty acid binding protein at 5 degrees C than at 37 degrees C, with the opposite occurring in the eutherm. Rat protein was clearly not adapted to function optimally at temperatures lower than the animal's body temperature.  相似文献   

13.
Escherichia coli K12 cells grown at higher temperatures and then subjected to lower temperatures produce fatty acids with higher unsaturated/saturated ratios than cells completely adapted to the lower temperatures (Okuyama et al. (1982) J. Biol. Chem. 257, 4812-4817). This hyper-response was not an artefact of chloramphenicol treatment and was observed when the shift-down was more than 20 degrees C in the cells grown at either 40 degrees C or 35 degrees C. In contrast, cells grown at either 25 degrees C or 30 degrees C showed no appreciable hyper-response in terms of unsaturated/saturated ratio on temperature shifts to as low as 10 degrees C. By combining shift-down and shift-up experiments, we could show the presence of different types of temperature dependency in the fatty acid-synthesizing systems of cells grown at various temperatures. Contrary to wild-type cells which synthesized mainly cis-vaccenate on down-shift to 10 degrees C, a mutant strain lacking beta-ketoacyl acyl-carrier protein synthase II synthesized more palmitoleate (16:1) and less palmitate at 10 degrees C than at 40 degrees C. The average chain lengths of saturated and unsaturated fatty acids also changed, but differently, between the mutant and wild-type cells on shifts of temperature. Thus, the mutant strain has a temperature-dependent fatty acid-synthesizing system qualitatively different from that seen in a wild-type strain.  相似文献   

14.
1. The direct effects of temperature on the metabolism of [1-14C]18:2(n-6), [1-14C]18:3(n-3), [1-14C]20:4(n-6) and [1-14C]20:5(n-3) were studied in isolated brain cells from rainbow trout, Oncorhynchus mykiss. 2. Recovery of radioactivity from all the polyunsaturated fatty acids (PUFA) in total lipid was significantly greater at 5 and 15 degrees C than at 25 degrees C. 3. The lower incubation temperatures decreased the relative net incorporation of all the 14C-labelled PUFA into phosphatidylcholine (PC) and increased the relative incorporation of the PUFA into the other phosphoglycerides, especially phosphatidylethanolamine (PE). 4. The effects on PC were generally more significant between 25 and 15 degrees C, whereas the effects on PE were generally significant both between 25 and 15 degrees C and between 15 and 5 degrees C. 5. This suggests that the lysophospholipid acyltransferases responsible for the incorporation of PUFA into different phosphoglycerides may have differential sensitivities to temperature. 6. In contrast, the acyltransferase activities showed fatty acyl preferences that were independent of temperature. 7. Although a trend towards decreased activity at 5 degrees C was apparent, temperature generally had little significant effect on the relative percentages of the PUFA metabolized via the desaturase pathways.  相似文献   

15.
A study was conducted to determine an optimum technique for semen cryopreservation and the biological competence of frozen-thawed ferret spermatozoa. Fifty-two fresh electroejaculates from 4 males were evaluated for sperm percentage motility, forward progressive motility, motility index (SMI) and acrosomal integrity. To determine the optimum temperature for maintaining sperm motility in vitro and the influence of glycerol on sperm motility, seminal aliquants were diluted in TEST diluent (containing either 0 or 4% glycerol) and maintained at 25 degrees or 37 degrees C. For cryopreservation, semen was diluted in each of 3 cryodiluents (TEST, PDV, BF5F), cooled for 30 min at 5 degrees C and pelleted on solid CO2 or frozen in 0.25 ml straws (20 degrees C/min to -100 degrees C). Following thawing, SMI and acrosomal integrity were determined. Ten females with maximum vulval swelling were given 90 i.u. human chorionic gonadotrophin and laparoscopically inseminated in utero with spermatozoa previously frozen using the optimum diluent and freeze-thaw method. The maintenance temperature of 25 degrees C was superior (P less than 0.05) to 37 degrees C for sustaining sperm motility, and glycerol did not influence (P greater than 0.05) motility for up to 11 h of culture. After thawing, motile spermatozoa were recovered in all treatment groups, but sperm motility and normal acrosomal ratings were highest using the PDV diluent, the pelleting method and thawing at 37 degrees C (P less than 0.05). Seven of the 10 ferrets (70%) inseminated with spermatozoa frozen by this approach became pregnant and produced 31 kits (mean litter size 4.4; range 1-9 kits).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
SYNOPSIS. The activities of glucose-6-phosphate dehydrogenase (G-6-PD) (EC No. 1.1.1.49), 6-phosphogluconate dehydrogenase (PGD) (EC No. 1.1.1.44), and isocitrate dehydrogenase (ICD) (EC No. 1.1.1.42) from promastigotes of Leishmania donovani strain 3S grown at 25 C in modified Tobie's (mT) medium and from promastigotes of the 37 C-adapted substrain of this strain cultivated in the mT at 37 C were assayed at 25 and 37 C. At 25 C ICD from both the strain and the substrain had the highest, and PGD, the lowest activity; the activity of G-6-PD was intermediate, but much closer to that of ICD. Irrespective of the temperature of the assay, the activities of G-6-PD and ICD from the 37 C substrain were significantly higher than those of these enzymes from the parental strain; however, the activity of PGD from the 25 C strain was slightly higher than that of this dehydrogenase from the 37 C-adapted stock. No significant activity losses of G-6-PD and ICD from either the strain or the substrain were noted after incubation of the extracts in the presence of 0.25 M sucrose at 37 C for 2 hr. PGD was unstable in such extracts, but it could be rendered stable by the addition of 4 mM 6-phosphogluconate. G-6-PD was the least and ICD the most dependent on Mg2+ ions. In the 15–25 C range, the Q10 values of the enzymes from the 25 C strain were 2.83, 2.5, and 2.63 for G-6-PD, PGD, and ICD, respectively. These values for the respective enzymes in the 25–35 C range were 2.06, 1.67, and 1.62. The Q10 values of the enzymes from the 37 C substrain in the 15–25 C range were 2.06 for G-6-PD, 3.25 for PGD, and 2.77 for ICD; in the 25–35 C range, the corresponding values were 1.67, 1.46, and 1.83. Cultivation of the 37 C substrain at 25 C was accompanied by a drop in G-6-PD and ICD activities.  相似文献   

17.
The association of Yersinia enterocolitica serotype 0:5,27 with Henle 407 epithelial cells in vitro was measured by using 35S-labelled bacteria with separation of unassociated bacteria by filtration (Nuclepore polycarbonate 5-micron membrane). The number of associated bacteria was related to the initial multiplicity. Changes in beginning pH, the presence of protein, availability of Ca2+ and Mg2+, and nature of carbohydrate in a defined bacterial growth medium did not change the degree of epithelial cell association. Bacteria recovered from the log phase of growth at 25 degrees C, or after growth to stationary phase at 35 degrees C, showed no association with epithelial cells. Optimal association occurred when the pH provided during interaction was between 7.6 and 8.6 and the temperature was either 25 or 35 degrees C. No association occurred within 30 min at 4 degrees C. The presence of Ca2+ and (or) Mg2+ during interaction had no effect, but the addition of peptone increased association. The results of this study demonstrate the importance of controlling both conditions provided for bacterial growth and those provided for interaction to achieve optimal association of Y. enterocolitica with epithelial cells in vitro.  相似文献   

18.
The effects of a lowered rearing temperature on body weight, core temperature (Tc) and norepinephrine(NE)-stimulated thermogenesis were investigated in 16- to 17-day-old Zucker rat pups. 16-day-old fatty pups were significantly heavier (9%) than lean littermates in litters reared at 18 degrees C ("cold-reared") but not in litters reared at 25 degrees C ("normally-reared"). After 2 h isolation at 25 degrees C, Tc of lean pups was slightly higher (37.1 degrees C) in cold-reared litters than in normally-reared litters (36.4 degrees C), while fatty pups reared at either temperature were severely hypothermic (Tc = 33 - 34 degrees C). At an ambient temperature of 25 degrees C Tc in fatty and lean cold-reared pups increased to 39.5 degrees C after subcutaneous injection of 800 micrograms/kg NE. Normally-reared lean pups reached the same peak Tc after NE injection, while their fatty littermates reached a significantly lower peak Tc of 38.4 degrees C. The hypothermia associated with the onset of excess fat deposition in suckling fatty Zucker rats is not caused by a reduced capacity for NE-stimulated thermogenesis.  相似文献   

19.
Temperature is an important factor regulating microbial activity and shaping the soil microbial community. Little is known, however, on how temperature affects the most important groups of the soil microorganisms, the bacteria and the fungi, in situ. We have therefore measured the instantaneous total activity (respiration rate), bacterial activity (growth rate as thymidine incorporation rate) and fungal activity (growth rate as acetate-in-ergosterol incorporation rate) in soil at different temperatures (0-45 degrees C). Two soils were compared: one was an agricultural soil low in organic matter and with high pH, and the other was a forest humus soil with high organic matter content and low pH. Fungal and bacterial growth rates had optimum temperatures around 25-30 degrees C, while at higher temperatures lower values were found. This decrease was more drastic for fungi than for bacteria, resulting in an increase in the ratio of bacterial to fungal growth rate at higher temperatures. A tendency towards the opposite effect was observed at low temperatures, indicating that fungi were more adapted to low-temperature conditions than bacteria. The temperature dependence of all three activities was well modelled by the square root (Ratkowsky) model below the optimum temperature for fungal and bacterial growth. The respiration rate increased over almost the whole temperature range, showing the highest value at around 45 degrees C. Thus, at temperatures above 30 degrees C there was an uncoupling between the instantaneous respiration rate and bacterial and fungal activity. At these high temperatures, the respiration rate closely followed the Arrhenius temperature relationship.  相似文献   

20.
Adsorption of bacteriophage SP50 to walls and heat-killed cells of Bacillus subtilis 168 appeared to be irreversible at both 37 and 0 degree C. Few, if any, active phage were desorbed when phage-wall complexes, formed at either temperature, were suspended in fresh medium. Bacteria rich in wall teichoic acid (TA) bound phage rapidly at both 0 and 37 degrees C, binding at the higher temperature being approximately twice as fast. Bacteria containing diminished proportions of TA showed less rapid phage adsorption but the reduction in rate was greater at 37 than at 0 degree C and bacteria containing only small proportions of TA bound phage more rapidly at 0 degree C than they did at 37 degrees C. These findings show that at low phage receptor density the temperature affects some component(s) involved in the phage-bacterium interaction such that the collision efficiency is increased at the lower temperature. The possible effect of temperature on the organization of bacterial surface components is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号