首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Undifferentiated odontogenic epithelium and dental papilla cells differentiate into ameloblasts and odontoblasts, respectively, both of which are essential for tooth development. These differentiation processes involve dramatic functional and morphological changes of the cells. For these changes to occur, activation of mitochondrial functions, including ATP production, is extremely important. In addition, these changes are closely related to mitochondrial fission and fusion, known as mitochondrial dynamics. However, few studies have focused on the role of mitochondrial dynamics in tooth development. The purpose of this study was to clarify this role. We used mouse tooth germ organ cultures and a mouse dental papilla cell line with the ability to differentiate into odontoblasts, in combination with knockdown of the mitochondrial fission factor, dynamin related protein (DRP)1. In organ cultures of the mouse first molar, tooth germ developed to the early bell stage. The amount of dentin formed under DRP1 inhibition was significantly larger than that of the control. In experiments using a mouse dental papilla cell line, differentiation into odontoblasts was enhanced by inhibiting DRP1. This was associated with increased mitochondrial elongation and ATP production compared to the control. These results suggest that DRP1 inhibition accelerates dentin formation through mitochondrial elongation and activation. This raises the possibility that DRP1 might be a therapeutic target for developmental disorders of teeth.  相似文献   

2.
Summary A double-staining immunocytochemical technique was used for the simultaneous detection, at the light- and electron-microscopical level, of proliferating bromodeoxyuridine (BrdU)-labelled cells and enamel protein (EP)-producing cells in the inner enamel epithelium (IEE) of rat tooth germ. BrdU-positive cells were found in the region of the IEE close to the cervical loop and never displayed EP-like immunoreactivity. BrdU-immunoreactivity was confined to the nucleus of replicating cells. In contrast, epithelial cells displaying EP-like immunoreactivity were found in the region of the forming dental cusp and were consistently BrdU-negative. EP-like immunoreactivity was detectable in the cytoplasmic compartments involved in the exocrine secretion pathway and in the extra-cellular matrix close to EP-immunoreactive cells. These data support the view that withdrawal from the cell cycle in the IEE is a temporal prerequisite for acquiring the functional competence of secreting EP. Moreover, cycling cells and secretory cells in the IEE constitute two separate compartments that are spatially defined, and that exhibit clear-cut staining patterns with respect to BrdU- and EP-immunoreactivity, respectively. We thus propose that BrdU-incorporation and EP-production may be used as specific markers of the differentiation of the IIE cells in studies of the possible role of growth factors, their receptors and oncoproteins in this tissue.  相似文献   

3.
4.
Lu Y  Ye L  Yu S  Zhang S  Xie Y  McKee MD  Li YC  Kong J  Eick JD  Dallas SL  Feng JQ 《Developmental biology》2007,303(1):191-201
Dentin matrix protein 1 (DMP1) is expressed in both pulp and odontoblast cells and deletion of the Dmp1 gene leads to defects in odontogenesis and mineralization. The goals of this study were to examine how DMP1 controls dentin mineralization and odontogenesis in vivo. Fluorochrome labeling of dentin in Dmp1-null mice showed a diffuse labeling pattern with a 3-fold reduction in dentin appositional rate compared to controls. Deletion of DMP1 was also associated with abnormalities in the dentinal tubule system and delayed formation of the third molar. Unlike the mineralization defect in Vitamin D receptor-null mice, the mineralization defect in Dmp1-null mice was not rescued by a high calcium and phosphate diet, suggesting a different effect of DMP1 on mineralization. Re-expression of Dmp1 in early and late odontoblasts under control of the Col1a1 promoter rescued the defects in mineralization as well as the defects in the dentinal tubules and third molar development. In contrast, re-expression of Dmp1 in mature odontoblasts, using the Dspp promoter, produced only a partial rescue of the mineralization defects. These data suggest that DMP1 is a key regulator of odontoblast differentiation, formation of the dentin tubular system and mineralization and its expression is required in both early and late odontoblasts for normal odontogenesis to proceed.  相似文献   

5.
The first matrix attachment region (MAR)-binding protein sequenced in plants, MFP1, has been characterised in two dicot species. Based on their antigenic relationship, we report here the conservation of MFP1-like proteins in proliferating root cells of onion (Allium cepa L). Two MFP1-like proteins with different molecular masses and solubilities were detected. The most abundant was a 90-kDa basic protein, presenting several separate spots in two-dimensional blots. The MFP1 was partially soluble and, similar to the proliferating cell nuclear antigen (PCNA)-labelled replication factories in the nucleus and nuclear matrix, was localised at discrete foci as detected by confocal microscopy. High-resolution immunolocalisation of MFP1 by electron microscopy identified the foci as nuclear structures, some of them containing PCNA, which are ultrastructurally similar to the replication factories described in animal cells. Our data provide the first report on MFP1-like proteins in the Alliaceae. In addition, we present evidence of the presence of AcMFP1 in the putative replication factories. Received: 12 May 2000 / Accepted: 13 September 2000  相似文献   

6.
Summary Immunohistochemistry by use of an antiserum against neurofilament protein (NFP) was applied for staining nerve fibers in the predentin and dentin of human third molars. By devising methods for fixation, decalcification and immunostaining, nerve fibers were clearly and specifically demonstrated in thick (more than 50 m) sections of teeth. Numerous NFP-positive fibers were distributed in the predentin throughout the coronal region, while a few positive fibers penetrated only a short distance into the dentin. The NFP-positive nerve fibers in the predentin took transverse and complicated courses across, rather than penetrating longitudinally through, the dentinal tubules. Pain sensation in the teeth might be attributable to these complex nerve fibers showing two or three-dimensional extensions.  相似文献   

7.
Summary The subcellular distribution of the inorganic elements calcium (Ca) and phosphorus (P) was studied in the first-formed dentin matrix during initial mineralization in neonatal rat molars. This most peripheral matrix region is comprised of a proteoglycan-rich ground substance, interwoven by a collagenous network, matrix vesicles, aperiodic fibrils derived from the dental basal lamina, and apical odontoblastic cell processes. All matrix components may possibly serve as templets for mineral deposition during initial calcification of first-formed mantle dentin and predentin. By means of the very sensitive ESI-analysis we studied the subcellular localization of Ca and P and their possible association with distinct organic extracellular matrix components and odontoblasts. Ca-signals were found in the ground substance, at striated collagen fibrils and plasma membranes of odontoblasts in the cuspal early matrix region, but occurred only sparsely in the ground substance of the more distal matrix region where odontoblast processes attach to aperiodic fibrils of the dental basal lamina. Ca was generally absent in matrix vesicles. In contrast, P-signals were found in matrix vesicles, at aperiodic fibrils and at the plasma membranes of odontoblasts. Ca and P co-localized at striated collagen fibrils (type I or II). These results suggest that striated collagen fibrils might serve as primary deposition sites for calcium phosphate during early biological calcification of organic extracellular macromolecules.  相似文献   

8.
Chromatin-enriched noncoding RNAs (ncRNAs) have emerged as key molecules in epigenetic processes by interacting with chromatin-associated proteins. Recently, protein-coding mRNA genes have been reported to be chromatin-tethered, similar with ncRNA. However, very little is known about whether chromatin-enriched mRNA is involved in the chromatin modification process. Here, we comprehensively examined chromatin-enriched RNA in squamous cell carcinoma (SQCC) cells by RNA subcellular localization analysis, which was a combination of RNA fractionation and RNA-seq. We identified 11 mRNAs as highly chromatin-enriched RNAs. Among these, we focused on the dentin matrix protein-1 (DMP-1) gene because its expression in SQCC cells has not been reported. Furthermore, we clarified that DMP-1 mRNA was retained in chromatin in its unspliced form in SQCC in vitro and in vivo. As the inhibition of the unspliced DMP-1 mRNA (unspDMP-1) expression resulted in decreased cellular proliferation in SQCC cells, we performed ChIP-qPCR to identify cell cycle-related genes whose expression was epigenetically modified by unspDMP-1, and found that the CDKN1B promoter became active in SQCC cells by inhibiting unspDMP-1 expression. This result was further validated by the increased CDKN1B gene expression in the cells treated with siRNA for unspDMP-1 and by restoration of the decreased cellular proliferation rate by simultaneously inhibiting CDKN1B expression in SQCC cells. Further, to examine whether unspDMP-1 was able to associate with the CDKN1B promoter region, SQCC cells stably expressing PP7-mCherry fusion protein were transiently transfected with the unspDMP-1 fused to 24 repeats of the PP7 RNA stem loop (unspDMP-1-24xPP7) and we found that unspDMP-1-24xPP7 was efficiently precipitated with the antibody against mCherry and was significantly enriched in the CDKN1B promoter region. Thus, unspDMP-1 is a novel chromatin-enriched RNA that epigenetically regulates cellular proliferation of SQCC.  相似文献   

9.
Influenza virus matrix protein 1 (M1) has been shown to play a crucial role in the virus replication, assembly and budding. We identified heat shock cognate protein 70 (Hsc70) as a M1 binding protein by immunoprecipitation and MALDI-TOF MS. The C terminal domain of M1 interacts with Hsc70. We found that Hsc70 does not correlate with the transport of M1 to the nucleus, however, it does inhibit the nuclear export of M1 and NP, thus resulting in the inhibition of viral production. This is the first demonstration that Hsc70 is directly associated with M1 and therefore is required for viral production.  相似文献   

10.
Pilocarpine-induced status epilepticus (SE) mimics many features of temporal lobe epilepsy and is a useful model to study neural changes that result from prolonged seizure activity. In this study, distribution of the anti-adhesive extracellular matrix protein SC1 was examined in the rat hippocampus following SE. Western blotting showed decreased levels of SC1 protein in the week following SE. Immunohistochemistry demonstrated that the decrease in overall SC1 protein levels was reflected by a reduction of SC1 signal in granule cells of the dentate gyrus. Interestingly, levels of SC1 protein in neurons of the seizure-resistant CA2 sector of the hippocampus did not change throughout the seizure time course. However, at 1 day post-SE, a subset of neurons of the hippocampal CA1, CA3, and hilar regions, which are noted for extensive neuronal degeneration after SE, exhibited a transient increase in SC1 signal. Neurons exhibiting enhanced SC1 signal were not detected at 7 days post-SE. The cellular stress response was also examined. A prominent induction of heat-shock protein (Hsp70) and Hsp27 was detected following SE, while levels of constitutively expressed Hsp40, Hsp90, Hsp110, and Hsc70 showed little change at the time points examined. The subset of neurons that demonstrated a transient increase in SC1 colocalized with the cellular stress marker Hsp70, the degeneration marker Fluoro-Jade B, and the neuron activity marker activity-regulated cytoskeleton-associated protein (Arc). Taken together, these findings suggest that SC1 may be a component of the 'matrix response' involved in remodeling events associated with neuronal degeneration following neural injury.  相似文献   

11.
Extracellular matrix protein 1 (ECM1), a widely expressed glycoprotein, has been shown to harbor mutations in lipoid proteinosis (LP), an autosomal recessive disorder characterized by profound alterations in the extracellular matrix of connective tissue. The biological function of ECM1 and its role in the pathomechanisms of LP are unknown. Fibulins comprise a family of extracellular matrix components, and the prototype of this family, fibulin-1, is expressed in various connective tissues and plays a role in developmental and pathologic processes. In this study, we demonstrate that ECM1, and specifically the second tandem repeat domain which is alternatively spliced, interacts with the C-terminal segments of fibulins 1C and 1D splice variants which differ in their C-terminal domain III. The interactions were detected by yeast two-hybrid genetic system and confirmed by co-immunoprecipitations. Kinetics of the binding between ECM1 and fibulin-1D, measured by biosensor assay, revealed a K(d) of 5.71 x 10(-8) M, indicating a strong protein-protein interaction. Since distinct splice variants of ECM1 and fibulin-1 have been shown to be co-expressed in tissues affected in LP, we propose that altered ECM1/fibulin-1 interactions may play a role in the pathogenesis of this disease as well as in a number of processes involving the extracellular matrix of connective tissues.  相似文献   

12.
Mitogen-activated protein kinase kinase (MKK) 7, a specific upstream activator of Jun N-terminal kinases (JNKs) in the stress-activated protein kinase (SAPK)/JNK signaling pathway, plays an important role in response to global cerebral ischemia. We investigated the subcellular localization of activated (phosphorylated) MKK (p-MKK) 7 using western blotting, immunoprecipitation and immunohistochemistry analysis in rat hippocampus. Transient forebrain ischemia was induced by the four-vessel occlusion method on Sprague-Dawley rats. Our results showed that both protein expression and activation of MKK7 were increased rapidly with peaks at 10 min of reperfusion in the nucleus of the hippocampal CA1 region. Simultaneously, in the cytosol activated MKK7 enhanced gradually and peaked at 30 min of reperfusion. In addition, we also detected JNK-interacting protein (JIP) 1, which accumulated in the perinuclear region of neurons at 30 min of reperfusion. Interestingly, at the same time-point the binding of JIP-1 to p-MKK7 reached a maximum. Consequently, we concluded that MKK7 was rapidly activated and then translocated from the nucleus to the cytosol depending on its activation in the hippocampal CA1 region. To further elucidate the possible mechanism of MKK7 activation and translocation, the antioxidant N-acetylcysteine was injected into the rats 20 min before ischemia. The result showed that the levels of MKK7 activation, translocation and binding of p-MKK7 to JIP-1 were obviously limited by N-acetylcysteine in the cytosol at 30 min after reperfusion. The findings suggested that MKK7 activation, translocation and binding to JIP-1 were closely associated with reactive oxygen species and might play a pivotal role in the activation of the JNK signaling pathway in brain ischemic injury.  相似文献   

13.
Liu P  Chen H  Cheng Y  Zeng FD  Tang CS 《生理学报》1999,51(5):541-547
本实验采用球囊剥脱大鼠主动脉内皮造成血管内膜损伤的芭Northern印迹分析,逆转录聚合酶链式反应(RT-PCR)等方法,研究大鼠主动脉内损伤后血管中的骨桥蛋白(osteopontin,OPN)和基质Gla蛋白(matrix Gla protein,MGP)mRNA水平的动态变化。与无内皮损伤血管比较,损伤后的血管中OPN和MGP的mRNA水平明显升高,损伤后1,7,14d,两者的mRNA水平逐渐  相似文献   

14.
Cell differentiation is a multi-step process marked by progressive silencing of gene expression through mechanisms believed to involve heterochromatin. We have previously shown that interaction between the Krüppel associated box-containing zinc finger proteins (KRAB-ZFP) corepressor TIF1β and the heterochromatin proteins HP1 is essential for progression through differentiation of embryonal carcinoma F9 cells. This analysis clearly demonstrated the link between gene specific repressors, components of heterochromatin and cell differentiation. In mammals, there are three HP1 isotypes, HP1α, β, and γ, that appear to be involved in both eu- and heterochromatin, but whose individual functions are still poorly defined. Therefore, the aim of the present study was to determine in vivo (i) which HP1 isotypes interact with TIF1β, (ii) in which sub-nuclear compartments these interactions occur and (iii) whether these interactions are regulated during cell differentiation. To address these questions, we established stable F9 cell lines co-expressing TIF1β fused to the ECFP fluorophore and HP1α, β, or γ fused to the EYFP fluorophore. Using the Föster resonance energy transfer (FRET) technology, we map the physical interaction between TIF1β-CFP and the different HP1-YFP isotypes in living F9 cells. We demonstrate that in non-differentiated cells, TIF1β-CFP/HP1-YFP interaction occurs only within euchromatin and involves selectively HP1β-YFP and HP1γ-YFP, but not HP1α-YFP. Furthermore, in differentiated cells, TIF1β-CFP selectively associates with HP1β-YFP within heterochromatin, while TIF1β-CFP/HP1γ-YFP is exclusively present within euchromatin. No physical TIF1β-CFP/HP1α-YFP interaction is detected in neither non differentiated nor differentiated cells. These results support the notion that, in vivo, HP1 isotypes have specific nonredundant functions and provide evidence for HP1β playing an essential role in the shuttling of TIF1β from eu- to heterochromatin during cell differentiation.  相似文献   

15.
We examined the effect of the inflammatory mediator interleukin-1alpha (IL-1alpha) on cell proliferation, alkaline phosphatase (ALPase) activity, and the expressions of cartilage matrix proteins, bone morphogenetic protein-2 (BMP-2), and BMP-2 receptors in human chondrosarcoma cell line OUMS-27 (chondrocytes). The cells were cultured with Dulbecco's modified Eagle's medium containing 15% fetal bovine serum with 0, 1, 10, or 100 units/ml of IL-1alpha for up to 14 days. The expressions of cartilage matrix proteins, BMP-2, and BMP-2 receptors were estimated by determining mRNA levels using semiquantitative or real-time PCR and/or by determining protein levels using Enzyme-linked immunosorbent assay. Cell proliferation was decreased after 5 days in culture with IL-1alpha. The ALPase activity was decreased significantly in the presence of IL-1alpha until day 10 of culture. The expression of type II collagen was significantly decreased after 7 days in culture with IL-1alpha. The expressions of aggrecan and link protein were significantly decreased through day 14 of culture with IL-1alpha. The expression of BMP-2 was increased at days 3, 7, and 14 of culture with IL-1alpha, while the expression of type II receptor for BMP-2 was significantly decreased in the samples. These results suggest that IL-1alpha suppresses the expression of cartilage matrix proteins through a suppression of the autocrine action of BMP-2, brought about by the decrease in BMP-2 receptor expression in chondrocytes.  相似文献   

16.
The emergence of jawed vertebrates was predicated on the appearance of several innovations, including tooth formation. The development of teeth requires the participation of several specialized genes, in particular, those necessary for the formation of hard tissues—dentin, enamel, and cementum. Some vertebrates, most conspicuously birds, secondarily lost the tooth-forming ability. To determine the fate of some of the tooth-forming genes in the birds, we tested a domestic fowl cDNA library for the expression of the dentin matrix protein 1 (DMP1) gene. The library was prepared from the poly(A+) RNA isolated from the jaws of 11- to 13-day-old embryos and the testing was carried out by the polymerase chain reaction with degenerate primers designed on the basis of the available mammalian and reptile sequences. A chicken homologue of the DMP1 gene identified by this approach was shown to be expressed in the jaws and long bones, the same two tissues as in mammals. The chicken DMP1 gene has an exon/intron organization similar to that of its mammalian and reptile counterparts. The chicken gene contains three short highly conserved segments, the rest of the gene being poorly alignable or not alignable with its mammalian or reptilian homologues. The distribution of similarities and dissimilarities along the gene is indicative of a mode of evolution in which only short segments are kept constant, while the rest of the gene is relatively free to vary as long as the proportion of certain amino acid residues is retained in the encoded polypeptide. The DMP1 gene may have been retained in birds because of its involvement in bone formation. Received: 5 April 1999 / Accepted: 9 August 1999  相似文献   

17.
An analysis of secreted proteins by the signal sequence trap method using a cDNA library of the rat pituitary anlage at embryonic days (E) 13.5 revealed the abundant expression of delta-like protein 1 (Dlk1) in the pituitary gland. Dlk1, an epidermal growth factor-like repeat protein in preadipocytes, functions in maintaining the preadipose state. Expression of Dlk1 mRNA in the pituitary at E13.5 and in the adult pituitary was confirmed by in situ hybridization. The expression pattern of Dlk1 during pituitary development was also studied by immunohistochemistry. Dlk1 protein first appeared in Rathke’s pouch and the infundibulum at E11.5; as development proceeded, expression became restricted to the pars distalis and pars tuberalis (PT). Dlk1 was expressed in most ACTH cells during the embryonic stages, but its expression was limited to only a few ACTH cells in the adult pituitary. It was also expressed in a small population of TSH, GTH, and PRL cells throughout development, whereas it was present in the cytoplasm of most GH cells at all developmental stages. Similarly, Dlk1 was localized in the cytoplasm of PT cells during development. These findings provide new insights into the mechanism of Dlk1 regarding its regulation of pituitary hormone-secreting cells during development.  相似文献   

18.
The extracellular matrix (ECM) acts as a critical factor during morphogenesis. Because the organization of the ECM directly influences the structure of tissues and organs, a determination of the way that ECM organization is regulated should help to clarify morphogenesis. We have analyzed the assembly of Del1, an ECM protein produced by endothelial cells in embryos, in the ECM. Del1 consists of three epidermal growth factor repeats (E1–E3) at its N-terminus and two discoidin domains (C1, C2) at its C-terminus. Experiments with various deletion mutants of Del1 have revealed that fragments containing the C-terminus of C1, which has a lectin-like structure, direct deposition in the ECM. The efficiency of deposition varies according to the presence of other domains in Del1. A fragment containing E3 and C1 has the strongest deposition activity, whereas fragments containing C2, which is highly homologous to C1, have low deposition activity. Digestion of ECM with hyaluronidase from bovine testis releases Del1 from the ECM, suggesting that glycosaminoglycans are involved in the deposition of Del1. In vivo gene transfer experiments have shown that fusion with the deposition domain of Del1 dramatically alters the distribution of exogenous proteins in mice. Thus, the extent of Del1 deposition may modify the organization of the ECM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号