首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reaction kinetics of the peroxidase activity of prostaglandin H synthase have been examined with 15-hydroperoxyeicosatetraenoic acid and hydrogen peroxide as substrates and tetramethylphenylenediamine as cosubstrate. The apparent Km and Vmax values for both hydroperoxides were found to increase linearly with the cosubstrate concentration. The overall reaction kinetics could be interpreted in terms of an initial reaction of the synthase with hydroperoxide to form an intermediate equivalent to horseradish peroxidase Compound I, followed by reduction of this intermediate by cosubstrate to regenerate the resting enzyme. The rate constants estimated for the generation of synthase Compound I were 7.1 X 10(7) M-1 s-1 with the lipid hydroperoxide and 9.1 X 10(4) M-1 s-1 with hydrogen peroxide. The rate constants estimated for the rate-determining step in the regeneration of resting enzyme by cosubstrate were 9.2 X 10(6) M-1 s-1 in the case of the reaction with lipid hydroperoxide and 3.5 X 10(6) M-1 s-1 in the case of reaction with hydrogen peroxide. The intrinsic affinities of the synthase peroxidase for substrate (Ks) were estimated to be on the order of 10(-8) M for lipid hydroperoxide and 10(-5) M for hydrogen peroxide. These affinities are quite similar to the reported affinities of the synthase for these hydroperoxides as activators of the cyclooxygenase. The peroxidase activity was found to be progressively inactivated during the peroxidase reaction. The rate of inactivation of the peroxidase was increased by increases in hydroperoxide level, and decreased by increases in peroxidase cosubstrate. The inactivation of the peroxidase appeared to occur by a hydroperoxide-dependent process, originating from synthase Compound I or Compound II.  相似文献   

2.
The selenoenzyme phospholipid hydroperoxide glutathione peroxidase   总被引:17,自引:0,他引:17  
The reduction of membrane-bound hydroperoxides is a major factor acting against lipid peroxidation in living systems. This paper presents the characterization of the previously described 'peroxidation-inhibiting protein' as a 'phospholipid hydroperoxide glutathione peroxidase'. The enzyme is a monomer of 23 kDa (SDS-polyacrylamide gel electrophoresis). It contains one gatom Se/22 000 g protein. Se is in the selenol form, as indicated by the inactivation experiments in the presence of iodoacetate under reducing conditions. The glutathione peroxidase activity is essentially the same on different phospholipids enzymatically hydroperoxidized by the use of soybean lipoxidase (EC 1.13.11.12) in the presence of deoxycholate. The kinetic data are compatible with a tert-uni ping-pong mechanism, as in the case of the 'classical' glutathione peroxidase (EC 1.11.1.9). The second-order rate constants (K1) for the reaction of the enzyme with the hydroperoxide substrates indicate that, while H2O2 is reduced faster by the glutathione peroxidase, linoleic acid hydroperoxide is reduced faster by the present enzyme. Moreover, the phospholipid hydroperoxides are reduced only by the latter. The dramatic stimulation exerted by Triton X-100 on the reduction of the phospholipid hydroperoxides suggests that this enzyme has an 'interfacial' character. The similarity of amino acid composition, Se content and kinetic mechanism, relative to the difference in substrate specificity, indicates that the two enzymes 'classical' glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are in some way related. The latter is apparently specialized for lipophylic, interfacial substrates.  相似文献   

3.
To reveal clues to the function of human plasma glutathione peroxidase (GPx), we investigated its catalytic effectiveness with a variety of hydroperoxides. Comparisons of hydroperoxides as substrates for plasma GPx based on the ratio ofV max /K m were blocked by the limited solubility of the organic hydroperoxides, which prevented kinetic saturation of the enzyme at the chosen glutathione concentration. Therefore, we compared the hydroperoxides by the fold increase in the apparent first-order rate constants of their reactions with glutathione owing to catalysis by plasma GPx. The reductions of aromatic and small hydrophobic hydroperoxides (cumene hydroperoxide,t-amyl hydroperoxide,t-butyl hydroperoxide, paramenthane hydroperoxide) were better catalyzed by plasma GPx than were reductions of the more “physiological” substrates (linoleic acid hydroperoxide, hydrogen peroxide, peroxidized plasma lipids, and oxidized cholesterol).  相似文献   

4.
C Balny  H Anni  T Yonetani 《FEBS letters》1987,221(2):349-354
Transient kinetic measurements show that cytochrome c peroxidase reacts with excess of hydroperoxides to produce compound ES in two phases. The activation energies for the fast and slow phases are calculated to be 6.3 and 20.5 kcal X mol-1, respectively. The fast phase is assigned to the reaction of native active (pulsed) cytochrome c peroxidase with peroxides, whereas the slow phase is due to the presence of an inactive (aged, resting) enzyme. As the active species is exhausted, the equilibrium between the active and inactive enzymes is shifted by a slow conformational change to replenish the active enzyme. Since the rate-limiting step of the reaction of the inactive enzyme with peroxides is the conformation change, the overall reaction rate is independent of the nature and concentration of peroxides.  相似文献   

5.
A novel glutathione peroxidase, which is active toward hydroperoxides of phospholipid in the presence of a detergent, has been purified to homogeneity from a rat liver postmicrosomal supernatant fraction by ammonium sulfate fractionation and three different column chromatographies. From a DE52 column, glutathione peroxidase active toward phosphatidylcholine dilinoleoyl hydroperoxides was eluted in one major and two minor peaks. The enzyme in the major peak was found to be separated from the "classic" glutathione peroxidase and glutathione S-transferases and further purified by Sephacryl S-200 and Mono Q column chromatographies. The purified enzyme was found to be homogeneous on polyacrylamide gel electrophoresis under nondenaturing conditions as well as that in the presence of sodium dodecyl sulfate. The molecular weight of the enzyme as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was 22,000, and that by gel filtration was comparable, indicating that the enzyme protein is a single polypeptide. The purified enzyme was found to catalyze the reduction of phosphatidylcholine dilinoleoyl hydroperoxides to the corresponding hydroxy derivatives. The isoelectric point of the enzyme was found at pH 6.2, and the optimum pH for the enzyme activity was 8.0. The enzyme was active toward cumene hydroperoxide, H2O2, and 1-monolinolein hydroperoxides in the absence of a detergent. The enzyme activity toward phospholipid hydroperoxides was minute in the absence of a detergent but was remarkably enhanced by the addition of a detergent. From these results, the presently purified enzyme is obviously different from the classic glutathione peroxidase and also from phospholipid hydroperoxide glutathione peroxidase purified from pig heart (Ursini, F., Maiorino, M., and Gregolin, C. (1985) Biochim. Biophys. Acta 839, 62-70), though considerably similar to the latter.  相似文献   

6.
The reactivity of rat liver glutathione (GSH) peroxidase with two hydroperoxides was determined using integrated rate equations. The bimolecular rate constant for the reaction of GSH peroxidase with linoleic acid hydroperoxide is approximately four times the rate constant with cumene hydroperoxide. The reactivity toward reduced glutathione is not altered by different hydroperoxides. The t12 for lipid hydroperoxide in rat liver is approximated at 9.5 × 10?5 min.  相似文献   

7.
Purified prostaglandin H synthase contains cyclooxygenase activity that forms the hydroperoxide, prostaglandin G, and peroxidase activity which removes hydroperoxides. Since hydroperoxides are necessary activators of cyclooxygenase activity, the paradoxical presence of two apparently opposing activities requires careful interpretation. Kinetic studies indicate that the concentration of hydroperoxide needed for full cyclooxygenase activity is much less than that which gives 50 percent effectiveness with the peroxidase. Thus, the peroxidase activity of the synthase is very ineffective in decreasing the hydroperoxide concentration below levels that still permit rapid cyclooxygenase action.  相似文献   

8.
Purified prostaglandin H synthase contains cyclooxygenase activity that forms the hydroperoxide, prostaglandin G, and peroxidase activity which removes hydroperoxides. Since hydroperoxides are necessary activators of cyclooxygenase activity, the paradoxical presence of two apparently opposing activities requires careful interpretation. Kinetic studies indicate that the concentration of hydroperoxide needed for full cyclooxygenase activity is much less than that which gives 50 percent effectiveness with the peroxidase. Thus, the peroxidase activity of the synthase is very ineffective in decreasing the hydroperoxide concentration below levels that still permit rapid cyclooxygenase action.  相似文献   

9.
The binding of indole to both horseradish peroxidase and its cyanide complex can be detected by difference spectra in the Soret region. Indole and cyanide binding are not competitive processes. The effect of indole on the binding rate constants between horseradish peroxidase and cyanide and compound I formation reactions between horseradish peroxidase and hydrogen peroxide or m-chloroperbenzoic acid was studied by the stopped-flow method. In all cases the rate constants of the indole-peroxidase complex with the ligand or substrates were smaller than those of free peroxidase. Since the m-chloroperbenzoic acid reaction has been shown to approach a diffusion-controlled rate, the effect of indole binding on the rate constant for compound I formation using this peracid was analyzed semiquantitatively using theoretical equations for a diffusion-controlled rate process with a capture-window active site model. The effect of indole binding on the diffusion-controlled rate constant could be explained by a decrease in the radius of the capture-window active site.  相似文献   

10.
11.
Hamster liver glutathione peroxidase was purified to homogeneity in three chromatographic steps and with 30% yield. The purified enzyme had a specific activity of approximately 500 μmol cumene hydroperoxide reduced/min/mg of protein at 37 °C, pH 7.6, and 0.25 mm GSH. The enzyme was shown to be a tetramer of indistinguishable subunits, the molecular weight of which was approximately 23,000 as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A single isoelectric point of 5.0 was attributed to the active enzyme. Amino acid analysis determined that selenocysteine, identified as its carboxymethyl derivative, was the only form of selenium. One residue of cysteine was found to be present in each glutathione peroxidase subunit. The presence of tryptophan was colorimetrically determined. Pseudo-first-order kinetics of inactivation of the enzyme by iodoacetate was observed at neutral pH with GSH as the only reducing agent. An optimal pH of 8.0 at 37 °C and an activation energy of 3 kcal/mol at pH 7.6 were found. A ter-uni-ping-pong mechanism was shown by the use of an integrated-rate equation. At pH 7.6, the apparent second-order rate constants for reaction of glutathione peroxidase with hydroperoxides were as follows: k1 (t-butyl hydroperoxide), 7.06 × 105 mm min?1; k1 (cumene hydroperoxide), 1.04 × 106 mm?1 min?1; k1 (p-menthane hydroperoxide), 1.2 × 106 mm?1 min?1; k1 (diisopropylbenzene hydroperoxide), 1.7 × 106 mm?1 min?1; k1 (linoleic acid hydroperoxide), 2.36 × 106 mm?1 min?1; k1 (ethyl hydroperoxide), 2.5 × 106 mm?1 min?1; and k1 (hydrogen peroxide), 2.98 × 106 mm?1 min?1. It is concluded that for bulky hydroperoxides, the more hydrophobic the substrate, the faster its reduction by glutathione peroxidase.  相似文献   

12.
The present review deals with the chemical properties of selenium in relation to its antioxidant properties and its reactivity in biological systems. The interaction of selenite with thiols and glutathione and the reactivity of selenocompounds with hydroperoxides are described. After a short survey on distribution, metabolism and organification of selenium, the role of this element as a component of the two seleno-dependent glutathione peroxidases is described. The main features of glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are also reviewed. Both enzymes reduce different hydroperoxides to the corresponding alcohols and the major difference is the reduction of lipid hydroperoxides in membrane matrix catalyzed only by the phospholipid hydroperoxide glutathione peroxidase. However, in spite of the different specificity for the peroxidic substrates, the kinetic mechanism of both glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase seems identical and proceeds through a tert-uni ping pong mechanism. In the reaction cycle, indeed, as supported by the kinetic data, the oxidation of the ionized selenol by the hydroperoxide yields a selenenic acid that in turn is reduced back by two reactions with reduced glutathione. Special emphasis has been given to the role of selenium-dependent glutathione peroxidases in the prevention of membrane lipid peroxidation. While glutathione peroxidase is able to reduce hydrogen peroxide and other hydroperoxides possibly present in the soluble compartment of the cell, this enzyme fails to inhibit microsomal lipid peroxidation induced by NADPH or ascorbate and iron complexes. On the other hand, phospholipid hydroperoxide glutathione peroxidase, by reducing the phospholipid hydroperoxides in the membranes, actively prevents lipid peroxidation, provided a normal content of vitamin E is present in the membranes. In fact, by preventing the free radical generation from lipid hydroperoxides, phospholipid hydroperoxide glutathione peroxidase decreases the vitamin E requirement necessary to inhibit lipid peroxidation. Finally, the possible regulatory role of the selenoperoxidases on the arachidonic acid cascade enzymes (cyclooxygenase and lipoxygenase) is discussed.  相似文献   

13.
The susceptibility of photodynamically-generated lipid hydroperoxides to reductive inactivation by glutathione peroxidase (GPX) has been investigated, using hematoporphyrin derivative as a photosensitizing agent and the human erythrocyte ghost as a target membrane. Photoperoxidized ghosts were reactive in a glutathione peroxidase/reductase (GPX/GRD)-coupled assay only after phospholipid hydrolysis by phospholipase A2 (PLA2). However, enzymatically determined lipid hydroperoxide values were consistently approx. 40% lower than iodometrically determined values throughout the course of photooxidation. Moreover, when irradiated ghosts were analyzed iodometrically during PLA2/GSH/GPX treatment, a residual 30-40% of non-reactive lipid hydroperoxide was observed. The possibility that cholesterol product(s) account for the non-reactive lipid hydroperoxide was examined by tracking cholesterol hydroperoxides in [14C]cholesterol-labeled ghosts. The sum of cholesterol hydroperoxides and GPX/GRD-detectable lipid hydroperoxides was found to agree closely with iodometrically determined lipid hydroperoxide throughout the course of irradiation. Thin-layer chromatography of total lipid extracts indicated that cholesterol hydroperoxide was unaffected by PLA2/GSH/GPX treatment, whereas most of the phospholipid peroxides were completely hydrolyzed and the released fatty acid peroxides were reduced to alcohols. It appears, therefore, that the GPX-resistant lipid hydroperoxides in photooxidized ghosts were derived primarily from cholesterol. Ascorbate plus Fe3+ produced a burst of free-radical lipid peroxidation in photooxidized, PLA2-treated ghosts. As expected for fatty acid hydroperoxide inactivation, the lipid peroxidation was inhibited by GSH/GPX, but only partially so, suggesting that cholesterol hydroperoxide-derived radicals play a major role in the reaction.  相似文献   

14.
We have shown that 1,2-diacylglycerol hydroperoxides activate protein kinase C (PKC) as efficiently as does phorbol ester [Takekoshi S, Kambayashi Y, Nagata H, Takagi T, Yamamoto Y, Watanabe K. Activation of protein kinase C by oxidized diacylglycerol. Biochem Biophys Res Commun 1995; 217: 654-660]. 1,2-Diacylglycerol hydroperoxides also stimulate human neutrophils to release superoxide whereas their hydroxides do not [Yamamoto Y, Kambayashi Y, Ito T, Watanabe K, Nakano M. 1,2-Diacylglycerol hydroperoxides induce the generation and release of superoxide anion from human polymorphonuclear leukocytes. FEBS Lett 1997; 412: 461-464]. One of the proposed mechanisms for the formation of 1,2-diacylglycerol hydroperoxides is the hydrolysis of phosphatidylcholine hydroperoxides by phospholipase C (PLC). To confirm this hypothesis, we incubated 1-palmitoyl-2-linoleoyl-phosphatidylcholine (PLPC) liposomes containing PLPC hydroperoxides (PLPC-OOH) with Bacillus cereus PLC and found 1-palmitoyl-2-linoleoylglycerol (PLG) and its hydroperoxide (PLG-OOH) were produced. PLC hydrolyzed the two substrates without preference, as the yields of PLG and PLG-OOH were the same even though cholesterol was incorporated into liposomes to increase bilayer integrity. Phospholipid hydroperoxide glutathione peroxidase (PHGPX) reduced PLG-OOH to its hydroxide in the presence of glutathione while the conventional cytosolic glutathione peroxidase did not. These data suggest that PLC hydrolyzes oxidized biomembranes to give 1,2-diacylglycerol hydroperoxides for PKC stimulation but PHGPX may prevent neutrophil stimulation by reducing 1,2-diacylglycerol hydroperoxides to their hydroxides.  相似文献   

15.
The catalytic cycle of horseradish peroxidase (HRP; donor:hydrogen peroxide oxidoreductase; EC 1.11.1.7) is initiated by a rapid oxidation of it by hydrogen peroxide to give an enzyme intermediate, compound I, which reverts to the resting state via two successive single electron transfer reactions from reducing substrate molecules, the first yielding a second enzyme intermediate, compound II. To investigate the mechanism of action of horseradish peroxidase on catechol substrates we have studied the oxidation of both 4-tert-butylcatechol and dopamine catalysed by this enzyme. The different polarity of the side chains of both o-diphenol substrates could help in the understanding of the nature of the rate-limiting step in the oxidation of these substrates by the enzyme. The procedure used is based on the experimental data to the corresponding steady-state equations and permitted evaluation of the more significant individual rate constants involved in the corresponding reaction mechanism. The values obtained for the rate constants for each of the two substrates allow us to conclude that the reaction of horseradish peroxidase compound II with o-diphenols can be visualised as a two-step mechanism in which the first step corresponds to the formation of an enzyme-substrate complex, and the second to the electron transfer from the substrate to the iron atom. The size and hydrophobicity of the substrates control their access to the hydrophobic binding site of horseradish peroxidase, but electron density in the hydroxyl group of C-4 is the most important feature for the electron transfer step.  相似文献   

16.
Rate constants for the reaction between horseradish peroxidase compound I and p-cresol have been determined at several values of pH between 2.98 and 10.81. These rate constants were used to construct a log (rate) versus pH profile from which it is readily seen that the most reactive form of the enzyme is its most basic form within this pH range so that base catalysis is occurring. At the maximum rate a second order rate constant of (5.1 +/- 0.3) x 10(-7) M-1 s-1 at 25 degrees is obtained. The activation energy of the reaction at the maximum rate was determined from an Arrhenius plot to be 5.0 +/- 0.5 kcal/mol. Evidence for an exception to the generally accepted enzymatic cycle of horseradish peroxidase is presented. One-half molar equivalent of p-cresol can convert compound I quantitatively to compound II at high pH, whereas usually this step requires 1 molar equivalent of reductant. The stoichiometry of this reaction is pH-dependent.  相似文献   

17.
This study investigated phospholipid hydroperoxides as substrates for non-selenium GSH peroxidase (NSGPx), an enzyme also called 1-Cys peroxiredoxin. Recombinant human NSGPx expressed in Escherichia coli from a human cDNA clone (HA0683) showed GSH peroxidase activity with sn-2-linolenoyl- or sn-2-arachidonoyl-phosphatidylcholine hydroperoxides as substrate; NADPH or thioredoxin could not substitute for GSH. Activity did not saturate with GSH, and kinetics were compatible with a ping-pong mechanism; kinetic constants (mM(-1) min(-1)) were k(1) = 1-3 x 10(5) and k(2) = 4-11 x 10(4). In the presence of 0.36 mM GSH, apparent K(m) was 120-130 microM and apparent V(max) was 1.5-1.6 micromol/min/mg of protein. Assays with H(2)O(2) and organic hydroperoxides as substrate indicated activity similar to that with phospholipid hydroperoxides. Maximal enzymatic activity was at pH 7-8. Activity with phospholipid hydroperoxide substrate was inhibited noncompetitively by mercaptosuccinate with K(i) 4 miroM. The enzyme had no GSH S-transferase activity. Bovine cDNA encoding NSGPx, isolated from a lung expression library using a polymerase chain reaction probe, showed >95% similarity to previously published human, rat, and mouse sequences and does not contain the TGA stop codon, which is translated as selenocysteine in selenium-containing peroxidases. The molecular mass of bovine NSGPx deduced from the cDNA is 25,047 Da. These results identify a new GSH peroxidase that is not a selenoenzyme and can reduce phospholipid hydroperoxides. Thus, this enzyme may be an important component of cellular antioxidant defense systems.  相似文献   

18.
We recently demonstrated activation of 5-lipoxygenase activity in human polymorphonuclear leukocytes (PMN) on preincubation of the cells with glutathione-depleting agents, namely 1-chloro-2,4-dinitrobenzene (Dnp-C1) and azodicarboxylic acid bis[dimethylamide] (diamide). In this paper we show that Dnp-C1, but not diamide, impairs the reduction of added organic peroxides in whole PMN. Also, since co-incubation of fatty acid hydroperoxides with arachidonate caused activation of 5-lipoxygenase, we propose that Dnp-C1 increases the peroxide level in PMN which is required for the onset of lipoxygenase activity. This could be substantiated in PMN homogenates by a glutathione-dependent depression of arachidonate 5-lipoxygenation. At higher arachidonate concentrations and in the presence of Ca2+ the glutathione effect was not observed but additional glutathione peroxidase also blocked this maximally stimulated 5-lipoxygenase. Together with other experiments, it became obvious that the formation of leukotrienes, but also of 15-lipoxygenase products, requires a sharply defined threshold level of fatty acid hydroperoxides which are generated by the lipoxygenases and counteracted by glutathione-dependent peroxidase(s). Dnp-C1 influences this equilibrium by removing glutathione and thereby inhibiting glutathione-dependent peroxidase activity. From our data we conclude that it is the physiological function of the peroxidase activity in PMN to determine an efficiently regulated threshold level of hydroperoxide products, below which no activation of 5-lipoxygenase or 15-lipoxygenase can occur.  相似文献   

19.
Prostaglandin H synthase isoforms 1 and 2 (PGHS-1 and -2) each have a peroxidase activity and also a cyclooxygenase activity that requires initiation by hydroperoxide. The hydroperoxide initiator requirement for PGHS-2 cyclooxygenase is about 10-fold lower than for PGHS-1 cyclooxygenase, and this difference may contribute to the distinct control of cellular prostanoid synthesis by the two isoforms. We compared the kinetics of the initial peroxidase steps in PGHS-1 and -2 to quantify mechanistic differences between the isoforms that might contribute to the difference in cyclooxygenase initiation efficiency. The kinetics of formation of Intermediate I (an Fe(IV) species with a porphyrin free radical) and Intermediate II (an Fe(IV) species with a tyrosyl free radical, thought to be the crucial oxidant in cyclooxygenase catalysis) were monitored at 4 degrees c by stopped flow spectrophotometry with several hydroperoxides as substrate. With 15-hydroperoxyeicosatetraenoic acid, the rate constant for Intermediate I formation (k1) was 2.3 x 10(7) M-1 s-1 for PGHS-1 and 2.5 x 10(7) M-1 s-1 for PGHS-2, indicating that the isoforms have similar initial reactivity with this lipid hydroperoxide. For PGHS-1, the rate of conversion of Intermediate I to Intermediate II (k2) became the limiting factor when the hydroperoxide level was increased, indicating a rate constant of 10(2)-10(3) s-1 for the generation of the active cyclooxygenase species. For PGHS-2, however, the transition between Intermediates I and II was not rate-limiting even at the highest hydroperoxide concentrations tested, indicating that the k2 value for PGHS-2 was much greater than that for PGHS-1. Computer modelling predicted that faster formation of the active cyclooxygenase species (Intermediate II) or increased stability of the active species increases the resistance of the cyclooxygenase to inhibition by the intracellular hydroperoxide scavenger, glutathione peroxidase. Kinetic differences between the PGHS isoforms in forming or stabilizing the active cyclooxygenase species can thus contribute to the difference in the regulation of their cellular activities.  相似文献   

20.
Glutathione peroxidase activity in the liver supernatant from rats fed a Se-deficient diet for 2 weeks was 8% of control when measured with H2O2 but 42% of control when assayed with cumene hydroperoxide. Two peaks of glutathione peroxidase activity were present in the Sephadex G-150 gel filtration chromatogram of rat liver supernatant when 1.5 mM cumene hydroperoxide was used as substrate. Only the first peak was detected when 0.25 mM H2O2 was used as substrate. The first peak was absent from chromatograms of Se-deficient rat liver supernatants; but the second peak, which eluted at a position corresponding to M.W. = 39,000, appeared unchanged. The second peak thus represents a second glutathione peroxidase activity which catalyzes the destruction of organic hydroperoxides but has little activity toward H2O2 and which persists in severe selenium deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号