首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
In this communication, we describe a recombination mechanism in bacteriophage T4D that acts only on glycosylated phage, acts in some regions of the genome, but not others, and is heat sensitive, showing decreasing activity with increasing temperature.  相似文献   

2.
Mutations in the Escherichia coli genes recK, recL and (probably) uvrE and polA increase special (glucosylation-dependent), but not general recombination in bactriophage T4D.  相似文献   

3.
4.
5.
E S Piruzian 《Genetika》1975,11(7):121-127
In studying intergenic and intragenic complementation in amber mutants in genes of phage T4 controlling the synthesis of phage tail fibres the data have been obtained indicating the dependency of the results of complementation tests on those of crosses of respective markers. The results obtained show that in complementation of amber mutants of phage T4 the phage yield varies widely and depends on the location of markers on the phage genetic map.  相似文献   

6.
7.
8.
9.
Partial Diploidy in Phage T4   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

10.
Acridine-Resistance in Phage T4d   总被引:6,自引:2,他引:4       下载免费PDF全文
  相似文献   

11.
The contribution of mismatch repair to genetic recombination in T4 phage has been evaluated by three independent approaches: (1) testing for non-additivity of recombinant frequencies; (2) measurements of double exchange frequencies in three-factor crosses: (3) comparisons of recombination abilities of mutations occupying the same site. Quantitative agreement among the results of these approaches suggests that within distances much less than the mean length of hybrid regions, mismatch repair accounts perfectly for high negative interference as measured in three-factor crosses and as manifested by non-additivity in two-factor crosses. The mismatch repair mechanism readily recognizes only particular mismatches, the repair frequency being dependent on the base sequence in both strands of the mismatched region.  相似文献   

12.
Levinthal C 《Genetics》1954,39(2):169-184
  相似文献   

13.
14.
Genetical Transformation of T4 Phage   总被引:1,自引:0,他引:1  
  相似文献   

15.
Analysis of "giant" phage, which package concatenated DNA into their capsids, shows that they are predominantly heterozygous. The results are compatible with the hypothesis that concatemers are generated by recombination.  相似文献   

16.
Deoxyribonucleic acid (DNA) from several "DNA-deficient" amber mutants was observed to be either nicked (amber 22, 82, 122, and wild type) or cut (amber 453) after injection into a nonpermissive host. This effect was inhibited by chloramphenicol (CM), indicating that it is due to phage-induced enzymes. Although most of the mutants tested for replication in a density-label system were in fact DNA-deficient (amber 22, 82, 122), one (amber 81) was found to replicate almost identically to the wild type, and another (amber 453) was found to assume a hybrid density only. The hybrid moiety was less than, or equal to, one phage equivalent length, and was more efficiently extracted from infected bacteria than was similarly replicated DNA from wild-type phage. Interparental recombination between heavy and light parental DNA was observed for amber 82, 122, and wild type, but was not observed for amber 453; it was inhibited by CM. In contrast to amber 82 and wild type, the amber 453 intracellular DNA does not have single-strand regions, Because amber 453, unlike amber 82 and wild type T4, does not recombine, nicking and exposure of single-strand regions is postulated to be a prerequisite for recombination.  相似文献   

17.
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates.  相似文献   

18.
The Mechanism of Genetic Recombination in Phage   总被引:13,自引:0,他引:13       下载免费PDF全文
  相似文献   

19.
The substantial process of general DNA recombination consists of production of ssDNA, exchange of the ssDNA and its homologous strand in a duplex, and cleavage of branched DNA to maturate recombination intermediates. Ten genes of T4 phage are involved in general recombination and apparently encode all of the proteins required for its own recombination. Several proteins among them interact with each other in a highly specific manner based on a protein-protein affinity and constitute a multicomponent protein machine to create an ssDNA gap essential for production of recombinogenic ssDNA, a machine to supply recombinogenic ssDNA which has a free end, or a machine to transfer the recombinogenic single strand into a homologous duplex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号