首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xanthine oxidase (XO) is a key enzyme which can catalyze xanthine to uric acid causing hyperuricemia in humans. By using the fractionation technique and inhibitory activity assay, an active compound that prevents XO from reacting with xanthine was isolated from wheat leaf. It was identified by the Mass and NMR as 6-aminopurine (adenine). A structure-activity study based on 6-aminopurine was conducted. The inhibition of XO activity by 6-aminopurine (IC(50)=10.89+/-0.13 microM) and its analogues was compared with that by allopurinol (IC(50)=7.82+/-0.12 microM). Among these analogues, 2-chloro-6(methylamino)purine (IC(50)=10.19+/-0.10 microM) and 4-aminopyrazolo[3,4-d] pyrimidine (IC(50)=30.26+/-0.23 microM) were found to be potent inhibitors of XO. Kinetics study showed that 2-chloro-6(methylamino)purine is non-competitive, while 4-aminopyrazolo[3,4-d]pyrimidine is competitive against XO.  相似文献   

2.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50 = 0.600 +/- 0.009 microM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50 = 1.326 +/- 0.013 microM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50 = 1.564 +/- 0.065 microM) also showed comparable inhibitory activity to that of allopurinol (IC50 = 0.776 +/- 0.012 microM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophenolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound was inhibiting enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

3.
The purine analogue, allopurinol, has been in clinical use for more than 30 years as an inhibitor of xanthine oxidase (XO) in the treatment of hyperuricemia and gout. As consequences of structural similarities to purine compounds, however, allopurinol, its major active product, oxypurinol, and their respective metabolites inhibit other enzymes involved in purine and pyrimidine metabolism. Febuxostat (TEI-6720, TMX-67) is a potent, non-purine inhibitor of XO, currently under clinical evaluation for the treatment of hyperuricemia and gout. In this study, we investigated the effects of febuxostat on several enzymes in purine and pyrimidine metabolism and characterized the mechanism of febuxostat inhibition of XO activity. Febuxostat displayed potent mixed-type inhibition of the activity of purified bovine milk XO, with Ki and Ki' values of 0.6 and 3.1 nM respectively, indicating inhibition of both the oxidized and reduced forms of XO. In contrast, at concentrations up to 100 muM, febuxostat had no significant effects on the activities of the following enzymes of purine and pyrimidine metabolism: guanine deaminase, hypoxanthine-guanine phosphoribosyltransferase, purine nucleoside phosphorylase, orotate phosphoribosyltransferase and orotidine-5'-monophosphate decarboxylase. These results demonstrate that febuxostat is a potent non-purine, selective inhibitor of XO, and could be useful for the treatment of hyperuricemia and gout.  相似文献   

4.
The purpose of this study was the evaluation of the xanthine oxidase (XO) inhibition produced by some synthetic 2-styrylchromones. Ten polyhydroxylated derivatives with several substitution patterns were synthesised, and these and a positive control, allopurinol, were tested for their effects on XO activity by measuring the formation of uric acid from xanthine. The synthesised 2-styrylchromones inhibited xanthine oxidase in a concentration-dependent and non-competitive manner. Some IC50 values found were as low as 0.55 microM, which, by comparison with the IC50 found for allopurinol (5.43 microM), indicates promising new inhibitors. Those 2-styrylchromones found to be potent XO inhibitors should be further evaluated as potential agents for the treatment of pathologies related to the enzyme's activity, as is the case of gout, ischaemia/reperfusion damage, hypertension, hepatitis and cancer.  相似文献   

5.
The effect of an alkylating agent, N-ethylmaleimide (NEM), on the activities of xanthine oxidase (XO) and xanthine dehydrogenase (XD) in the presence and absence of Cu2+ or trypsin in the cytosolic fraction from rabbit liver was examined. At concentrations ranging from 0.25 to 2.0 microM, allopurinol, which is generally considered to be a XO inhibitor, suppressed the XD activity (41.5-93.4% inhibition) in addition to the XO activity (28.6-88.4% inhibition) under basal conditions, without the addition of Cu2+ or trypsin. In contrast, NEM (100-400 microM) inhibited the XO activity (35.7-85.7% inhibition) without affecting the XD activity. Also, NEM inhibited the Cu2+- and trypsin-induced XO activities, but did not affect the XD activity at the same concentration range. These results demonstrate that NEM can be a selective inhibitor of XO activity in rabbit liver.  相似文献   

6.
Xanthine oxidase (XO) is an enzyme that catalyzes the oxidation of hypoxanthine to xanthine and uric acid and plays an important role in purine catabolism. The purine analogue, allopurinol, is a well-known inhibitor of XO widely used in the clinical management of gout and conditions associated with hyperuricemia. More recent data indicate that allopurinol reduces oxidative stress and improves vascular function in several cardiometabolic diseases, prolongs exercise time in angina, and improves the efficiency of cardiac contractility in heart failure. XO also plays an important role in free radical generation during skeletal muscle contraction and thus, it has been related to the muscle damage associated to exhaustive exercise. Several research groups have shown the protective effect of allopurinol in the prevention of this type of damage.  相似文献   

7.
A retro-inverso analogue of the pseudosubstrate sequence, Arg-Phe-Ala-Arg-Lys-Gly-Ala25-Leu-Arg-Gln-Lys-Asn-Val (1), found in the regulatory domain of all protein kinase C (PKC) subspecies was synthesized. It shows to be an inhibitor (IC50 = 31 microM) of the phosphorylation, by PKC, of [Ala9.10,Lys11.12] glycogen synthase (1-12). Its analogue in which D Ala25 is replaced by D Ser is not a PKC substrate, but a more potent inhibitor, competitive with the peptidic substrate (IC50 = 5 microM, Ki = 2 microM). Both retro-inverso peptides are highly specific for PKC versus adenosine cAMP-dependent protein kinase (PKA) and are totally stable towards proteolysis by trypsin or pronase.  相似文献   

8.
The phase transfer method was applied to perform the nucleophilic substitution of 2,6-dichloropurines by modified arylalkyl alcohol or phenols. Since under these conditions only the 6-halogen is exchanged, this method gives 2-chloro-6-aryloxy- and 2-chloro-6-arylalkoxy-purines. 2-Chloro-6-benzylthiopurine was synthesized by alkylation of 2-chloro-6-thiopurine with benzyl bromide. The stereoisomers of 2-chloro-6-(1-phenyl-1-ethoxy)purine were obtained from R- and S-enantiomers of sec.-phenylethylalcohol and 2,6-dichloropurine. All derivatives were tested for inhibition with purified hexameric E. coli purine nucleoside phosphorylase (PNP). For analogues showing IC50 < 10 microM, the type of inhibition and inhibition constants were determined. In all cases the experimental data were best described by the mixed-type inhibition model and the uncompetitive inhibition constant, Kiu, was found to be several-fold lower than the competitive inhibition constant, Kic. This effect seems to be due to the 6-aryloxy- or 6-arylalkoxy substituent, because a natural PNP substrate adenine, as well as 2-chloroadenine, show mixed type inhibition with almost the same inhibition constants Kiu and Kic. The most potent inhibition was observed for 6-benzylthio-2-chloro-, 6-benzyloxy-2-chloro-, 2-chloro-6-(2-phenyl-1-ethoxy), 2-chloro-6-(3-phenyl-1-propoxy)- and 2-chloro-6-ethoxypurines (Kiu = 0.4, 0.6, 1.4, 1.4 and 2.2 microM, respectively). The R-stereoisomer of 2-chloro-6-(1-pheny-1-ethoxy)purine has Kiu = 2.0 microM, whereas inhibition of its S counterpart is rather weak (IC50 > 12 microM). More rigid (e.g. phenoxy-), non-planar (cyclohexyloxy-), or more bulky (2,4,6-trimethylphenoxy-) substituents at position 6 of the purine base gave less potent inhibitors (IC50 = 26, 56 and > 100 microM, respectively). The derivatives are selective inhibitors of hexameric "high-molecular mass" PNPs because no inhibitory activity vs. trimeric Cellulomonas sp. PNP was detected. By establishing the ligand-dependent stabilization pattern of the E. coli PNP it was shown that the new derivatives, similarly as the natural purine bases, are able to form a dead-end ternary complex with the enzyme and orthophosphate. It was also shown that the derivatives are substrates in the reverse synthetic direction catalyzed by E. coli PNP.  相似文献   

9.
Acyclovir transport into human erythrocytes   总被引:2,自引:0,他引:2  
The mechanism of transport of the antiviral agent acyclovir (ACV) into human erythrocytes has been investigated. Initial velocities of ACV influx were determined with an "inhibitor-stop" assay that used papaverine to inhibit ACV influx rapidly and completely. ACV influx was nonconcentrative and appeared to be rate-saturable with a Km of 260 +/- 20 microM (n = 8). However, two lines of evidence indicate that ACV permeates the erythrocyte membrane by means other than the nucleoside transport system: 1) potent inhibitors (1.0 microM) of nucleoside transport (dipyridamole, 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and dilazep) had little (less than 8% inhibition) or no effect upon the influx of 5.0 microM ACV; and 2) a 100-fold molar excess of several purine and pyrimidine nucleosides had no inhibitory effect upon the influx of 1.0 microM ACV. However, ACV transport was inhibited competitively by adenine (Ki = 9.5 microM), guanine (Ki = 25 microM), and hypoxanthine (Ki = 180 microM). Conversely, ACV was a competitive inhibitor (Ki = 240-280 microM) of the transport of adenine (Km = 13 microM), guanine (Km = 37 microM), and hypoxanthine (Km = 180 microM). Desciclovir and ganciclovir, two compounds related structurally to ACV, were also found to be competitive inhibitors of acyclovir influx (Ki = 1.7 and 1.5 mM, respectively). These results indicate that ACV enters human erythrocytes chiefly via the same nucleobase carrier that transports adenine, guanine, and hypoxanthine.  相似文献   

10.
One new ortho-dihydroxyisoflavone, 7,3',4'-trihydroxyisoflavone (2), and two known ortho-dihydroxyisoflavone derivatives were isolated from 5-year-old Doenjang (Korean fermented soypaste), and evaluated as potent antioxidant by comparing with other known isoflavones. 7,8,4'-Trihydroxyisoflavone (1), 7,3',4'-trihydroxyisoflavone (2), and 6,7,4'-trihydroxyisoflavone (3) inhibited DPPH (Diphenyl-1-picryl hydrazyl) formation by 50% at a concentration of 21.5+/-0.2, 28.7+/-0.4 and 32.6+/-0.6 (IC(50)), respectively, whereas three isoflavones showed weak DPPH radical scavenging activity. In xanthine oxidase (XO) system, in which both inhibition of xanthine oxidase and superoxide scavenging effect were measured in one assay. Compound 1 (IC(50)= 6.6+/-0.4 microM) and 2 (IC(50)=16.8+/-1.2 microM) show significant inhibitory activity and greater effect than allopurinol. But, compound 3 and other isoflavones showed lower inhibition activity. This study shows that the position of hydroxyl substituent at the aromatic ring of isoflavone plays an important role in radical scavenging effect.  相似文献   

11.
Through the development of a new chemical strategy, aminophosphinic peptides containing a pseudoglutamyl residue (Glu Psi(PO2-CH2)Leu-Xaa) in the N-terminal position were synthesized and evaluated as inhibitors of aminopeptidase A (APA). The most potent inhibitor developed in this study, Glu Psi(PO2-CH2)Leu-Ala, displayed a Ki value of 0.8 nM for APA, but was much less effective in blocking aminopeptidase N (APN) (Ki = 31 microM). The critical role of the glutamyl residue in this phosphinic peptide, both in potency and selectivity, is exemplified by the P1 position analogue, Ala Psi(PO2-CH2)Leu-Ala, which exhibited a Ki value of 0.9 microM toward APA but behaved as a rather potent inhibitor of APN (Ki = 25 nM). Glu Psi(PO2-CH2)Leu-Xaa peptides are poor inhibitors of angiotensin converting enzyme (Ki values higher than 1 microM). Depending on the nature of the Xaa residue, the potency of these phosphinic peptides toward neutral endopeptidase 24-11 varied from 50 nM to 3 microM. In view of the in vivo role of APA in the formation of brain angiotensin III, one of the main effector peptides of the renin angiotensin system in the central nervous system, highly potent and selective inhibitors of APA may find important therapeutic applications soon.  相似文献   

12.
2-Deamino-2-methyl-N10-propargyl-5,8-dideazafolic acid (ICI 198583) is a potent inhibitor of thymidylate synthase. Its analogue, N(alpha)-[4-[N-[(3,4-dihydro-2-methyl-4-oxo-6-quinazolinyl)methyl]-N-propargylamino]phenylacetyl]-L-glutamic acid, containing p-aminophenylacetic acid residue substituting p-aminobenzoic acid residue, was synthesized. The new analogue exhibited a moderately potent thymidylate synthase inhibition, of linear mixed type vs. the cofactor, N(5,10)-methylenetetrahydrofolate. The Ki value of 0.34 microM, determined with a purified recombinant rat hepatoma enzyme, was about 30-fold higher than that reported for inhibition of thymidylate synthase from mouse leukemia L1210 cells by ICI 198583 (Hughes et al., 1990, J. Med. Chem. 33, 3060). Growth of mouse leukemia L5178Y cells was inhibited by the analogue (IC50 = 1.26 mM) 180-fold weaker than by ICI 198583 (IC50 = 6.9 microM).  相似文献   

13.
The purpose of this study was the evaluation of the xanthine oxidase (XO) inhibition produced by some synthetic 2-styrylchromones. Ten polyhydroxylated derivatives with several substitution patterns were synthesised, and these and a positive control, allopurinol, were tested for their effects on XO activity by measuring the formation of uric acid from xanthine. The synthesised 2-styrylchromones inhibited xanthine oxidase in a concentration-dependent and non-competitive manner. Some IC 50 values found were as low as 0.55 μM, which, by comparison with the IC 50 found for allopurinol (5.43 μM), indicates promising new inhibitors. Those 2-styrylchromones found to be potent XO inhibitors should be further evaluated as potential agents for the treatment of pathologies related to the enzyme's activity, as is the case of gout, ischaemia/reperfusion damage, hypertension, hepatitis and cancer.  相似文献   

14.
Previously it has been shown that the levels of xanthine dehydrogenase in chick liver can be increased by feeding high-protein diets, adenine, and allopurinol (a xanthine dehydrogenase inhibitor). Also, it has been shown that starvation increases the level of xanthine dehydrogenase in chick liver and that unsaturated fatty acids in the diet suppress the levels of xanthine dehydrogenase in the liver. Results reported here show that starvation and high-protein diets enhance the levels of purine nucleoside phosphorylase and that unsaturated fatty acids suppress the level of this enzyme. In contrast with xanthine dehydrogenase, adenine and allopurinol have no effect on purine nucleoside phosphorylase levels. These results suggest that dietary protein and unsaturated fatty acids regulate more than one enzyme involved in the production of uric acid.Levels of xanthine dehydrogenase in the pancreas can be increased by feeding and decreased by starvation or feeding unsaturated fatty acids. None of these procedures has any effect on the level of pancreatic purine nucleoside phosphorylase.  相似文献   

15.
The nonpurine selective xanthine oxidase (XO) inhibitor febuxostat attenuates development of left ventricular (LV) hypertrophy and dysfunction in mice when treatment is initiated within 1 hour of transverse aortic constriction (TAC). This study investigated whether a 7-day delay of treatment with the XO inhibitors febuxostat or allopurinol would reverse TAC-induced changes after onset of heart failure (HF). Neither treatment significantly affected TAC-induced LV hypertrophy; only febuxostat caused a modest improvement in LV function (~10% increase in LV ejection fraction). However, the purine analog allopurinol tended to increase mortality compared with vehicle or febuxostat in HF mice.  相似文献   

16.
Inhibition of xanthine oxidase-catalyzed conversion of xanthine to uric acid by various pyrazolopyrimidine-based inhibitors (allopurinol derivatives) was evaluated and compared with the standard inhibitor allopurinol. Three compounds out of the seven compounds used in the study were found to be reasonably good inhibitors of xanthine oxidase (XO). 4-Amino-6-mercaptopyrazolo-3,4-d-pyrimidine was found to be the most potent inhibitor of XO (IC50=0.600±0.009 µM). 4-Mercapto-1H-pyrazolo-3,4-d-pyrimidine (IC50=1.326±0.013 µM) and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine (IC50=1.564±0.065 µM) also showed inhibitory activity comparable to that of allopurinol (IC50 = 0.776 ± 0.012 µM). All three compounds showed competitive type of inhibition with comparable Ki values. Induction of the electron transfer reaction catalyzed by XO in the presence of these compounds monitored as reduction of 2,6-dichlorophe nolindophenol (DCPIP) revealed that electron transfer by 4-amino-6-mercaptopyrazolo-3,4-d-pyrimidine is comparable to that obtained by allopurinol or xanthine. However, 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine and 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine did not show DCPIP reduction. On the other hand, enzymatic reduction of cytochrome c in the presence of the three compounds was found to be insignificant and much less in comparison to allopurinol and xanthine. Therefore, both 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine and 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine displayed the inhibitory property and also did not produce XO-mediated reactive oxygen species (ROS). Since 4-mercapto-1H-pyrazolo-3,4-d-pyrimidine was found to have some toxicity, the effect of 4-amino-6-hydroxypyrazolo-3,4-d-pyrimidine on the enzymatic formation of uric acid and ROS was investigated and it was found that this compound inhibited enzymatic generation of both uric acid and ROS. It can be noted that the standard inhibitor, allopurinol, inhibits uric acid formation but produces ROS.  相似文献   

17.
The conversion of xanthine dehydrogenase (XDH) to xanthine oxidase (XO) and the reaction of XO-derived partially reduced oxygen species (PROS) have been suggested to be important in diverse mechanisms of tissue pathophysiology, including oxygen toxicity. Bovine aortic endothelial cells expressed variable amounts of XDH and XO activity in culture. Xanthine dehydrogenase plus xanthine oxidase specific activity increased in dividing cells, peaked after achieving confluency, and decreased in postconfluent cells. Exposure of BAEC to hyperoxia (95% O2; 5% CO2) for 0-48 h caused no change in cell protein or DNA when compared to normoxic controls. Cell XDH+XO activity decreased 98% after 48 h of 95% O2 exposure and decreased 68% after 48 h normoxia. During hyperoxia, the percentage of cell XDH+XO in the XO form increased to 100%, but was unchanged in air controls. Cell catalase activity was unaffected by hyperoxia and lactate dehydrogenase activity was minimally elevated. Hyperoxia resulted in enhanced cell detachment from monolayers, which increased 112% compared to controls. Release of DNA and preincorporated [8-14C]adenine was also used to assess hyperoxic cell injury and did not significantly change in exposed cells. Pretreatment of cells with allopurinol for 1 h inhibited XDH+XO activity 100%, which could be reversed after oxidation of cell lysates with potassium ferricyanide (K3Fe(CN)6). After 48 h of culture in air with allopurinol, cell XDH+XO activity was enhanced when assayed after reversal of inhibition with K3Fe(CN)6, and cell detachment was decreased. In contrast, allopurinol treatment of cells 1 h prior to and during 48 h of hyperoxic exposure did not reduce cell damage. After K3Fe(CN)6 oxidation, XDH+XO activity was undetectable in hyperoxic cell lysates. Thus, XO-derived PROS did not contribute to cell injury or inactivation of XDH+XO during hyperoxia. It is concluded that endogenous cell XO was not a significant source of reactive oxygen species during hyperoxia and contributes only minimally to net cell production of O2- and H2O2 during normoxia.  相似文献   

18.
A series of the novel purine and pyrimidine nucleoside analogues were synthesised in which the sugar moiety was replaced by the 4-amino-2-butenyl (2-6 and 10-18) and oxiranyl (8 and 20) spacer. The Z- (2-6) and E-isomers (10-18) of unsaturated acyclic nucleoside analogues were synthesized by condensation of 2- and 6-substituted purine and 5-substituted uracil bases with Z- (1) or E-phthalimide (9) precursors. The oxiranyl nucleoside analogues (8 and 20) were obtained by epoxidation of 1 and 9 with m-chloroperoxybenzoic acid and subsequent coupling with adenine. The new compounds were evaluated for their antiviral and antitumor cell activities. Among the olefinic nucleoside analogues, Z-isomer of adenine containing 4-amino-2-butenyl side chain (6) exhibited the best cytostatic activities, particularly against colon carcinoma (SW 620, IC50 = 26 microM). Its E-isomer 15 did not show any antiproliferative activity against malignant tumor cell lines, except for a slight inhibition of colon carcinoma (SW 620, IC50 = 56.5 microM) cells. In general, Z-isomers showed better cytostatic activities than the corresponding E-isomers. (Z)-4-Amino-2-butenyl-adenine nucleoside analogue 6 showed albeit modest but selective activity against HIV-1 (EC50 = 4.83 microg mL(-1)).  相似文献   

19.
We have examined the effects of folate compounds and the folate analog amethopterin (methotrexate) as inhibitors of mammalian xanthine oxidase and have found that they offer potent inhibition of the enzyme. We have compared the inhibitory potency of folic acid and its coenzyme derivative tetrahydrofolic acid to that of allopurinol, a known inhibitor of xanthine oxidase, and have demonstrated that folic acid and tetrahydrofolic acid are severalfold more potent than allopurinol as inhibitors of xanthine oxidase. Comparative inhibition constants calculated were 5.0 X 10(-7) M for folic acid. 1.25 X 10(-6) M for tetrahydrofolic acid, and 4.88 X 10(-6) M for allopurinol. Incubation of xanthine oxidase with folic acid at a concentration of 10(-6) M abolished 94% of the enzymic activity within 1 min of incubation with the enzyme. At the same concentration, allopurinol was almost ineffective as an inhibitor of xanthine oxidase. The substrate xanthine protected the enzyme against total inhibition by folic acid. Reversibility of the enzymic inhibition by folic acid was demonstrated. Folic acid-inactivated enzyme was totally regenerated either by filtration through Sephadex G-200 or by precipitation with ammonium sulfate. 2-Amino-4-hydroxypteridine was a poor substrate for the enzyme but a potent inhibitor for the oxidation of xanthine by the enzyme. The inhibition constant calculated was 1.50 X 10(-6) M. In the presence of an excess of xanthine oxidase, neither folic acid nor tetrahydrofolic acid and allopurinol exhibited any change in intensity of their absorbance or in the wavelength of their maximal absorbance that might have been suggestive of substrate utility. The folate analog amethopterin was also determined a potent inhibitor of mammalian xanthine oxidase. The inhibition constant calculated was 3.0 X 10(-5) M.  相似文献   

20.
The purine hydroxylases I and II of Aspergillus nidulans [previously called xanthine dehydrogenases I and II: Scazzocchio, Holl and Foguelman, Eur. J. Biochem. 36, 428--445 (1973)] have been studied in crude extracts. The two enzymes differ in their substrate specificities, purine hydroxylase II being able to accept nicotinate as a substrate and unable to hydroxylate xanthine. The kinetics of inhibition with allopurinol and oxypurinol are also different, the two analogues being pseudo-irreversible inhibitors of purine hydroxylase I, while allopurinol is a competitive inhibitor of purine hydroxylase II and oxypurinol shows anti-competitive inhibition. Differences in electro-phoretic mobility and molecular size are also shown. We have failed to show the formation of hybrid purine hydroxylase I/II molecules. While a common evolutionary origin of the purine hydroxylases could be postulated, the data reveal a considerable divergence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号