首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of rat liver mitochondria with digitonin followed by differential centrifugation was used to resolve the intramitochondrial localization of both soluble and particulate enzymes. Rat liver mitochondria were separated into three fractions: inner membrane plus matrix, outer membrane, and a soluble fraction containing enzymes localized between the membranes plus some solublized outer membrane. Monoamine oxidase, kynurenine hydroxylase, and rotenone-insensitive NADH-cytochrome c reductase were found primarily in the outer membrane fraction. Succinate-cytochrome c reductase, succinate dehydrogenase, cytochrome oxidase, β-hydroxybutyrate dehydrogenase, α-ketoglutarate dehydrogenase, lipoamide dehydrogenase, NAD- and NADH-isocitrate dehydrogenase, glutamate dehydrogenase, aspartate aminotransferase, and ornithine transcarbamoylase were found in the inner membrane-matrix fraction. Nucleoside diphosphokinase was found in both the outer membrane and soluble fractions; this suggests a dual localization. Adenylate kinase was found entirely in the soluble fraction and was released at a lower digitonin concentration than was the outer membrane; this suggests that this enzyme is localized between the two membranes. The inner membrane-matrix fraction was separated into inner membrane and matrix by treatment with the nonionic detergent Lubrol, and this separation was used as a basis for calculating the relative protein content of the mitochondrial components. The inner membrane-matrix fraction retained a high degree of morphological and biochemical integrity and exhibited a high respiratory rate and respiratory control when assayed in a sucrose-mannitol medium containing EDTA.  相似文献   

2.
Separation of Neurospora mitochondrial outer membranes from the inner membrane/matrix fraction was effected by digitonin treatment and discontinuous density gradient centrifugation. The solubilization of four isoleucine-valine biosynthetic enzymes was studied as a function of digitonin concentration and time of incubation in the detergent. The kinetics of the appearance of valine biosynthetic function in fractions outside of the inner membrane/matrix fraction, coupled with enzyme solubilization patterns similar to that for the matrix marker, mitochondrial malate dehydrogenase, indicate that the four isoleucine-valine pathway enzymes are localized in the mitochondrial matrix.  相似文献   

3.
Inner- and outer-membrane enzymes of mitochondria during liver regeneration   总被引:6,自引:2,他引:4  
1. Marker enzymes for the mitochondrial matrix, inner membrane, inter-membrane space and outer membrane were measured in mitochondria isolated from control and regenerating rat liver. The specific activity of these enzymes was then followed for up to 30 days after operation. 2. The specific activity of marker enzymes for the matrix, inner membrane and inter-membrane space remained constant during liver regeneration. 3. However, the specific activities of monoamine oxidase and kynurenine hydroxylase, both outer-membrane markers, fell by 67% and 49% respectively from their control values at 4 days after operation, and returned to normal by about 3 weeks. 4. The repression of kynurenine hydroxylase activity was shown to be unrelated to any independent variation in tryptophan catabolism, based on tryptophan pyrrolase assays. 5. These results are considered to indicate that enzymes of the inner and outer mitochondrial membranes are synthesized asynchronously during morphogenesis. 6. The enzyme complement of purified outer membrane at 4 days after operation was about 50% of that of the appropriate control. Thus the composition of the outer membrane itself may vary dramatically, and supports the concept that constitutive enzymes may turn over independently of a membrane's existence. 7. The behaviour of the rotenone-insensitive, NADH cytochrome c reductase did not parallel the other outer-membrane enzymes for intact mitochondria, but did so when assayed in highly purified fractions of outer membrane. This suggests a labile binding to the outer membrane during the early stages of morphogenesis. 8. Electrophoresis of inner- and outer-membrane proteins revealed little difference between control and experimental mitochondria at 4 days, except for an increase in several, high-molecular-weight components of the outer membrane. These bands closely correspond to similar bands derived from smooth endoplasmic reticulum. 9. The results are discussed in relation to the biogenesis and turnover of mitochondria, and are considered to provide evidence for turnover as a unit, at least for the matrix, inner membrane, inter-membrane space and possibly some form of primary outer membrane.  相似文献   

4.
The initial phases of catalase degradation in rat hepatocytes were studied. Preparations of highly purified fractions of lysosomes and mitochondria from rat liver were obtained. The proteinase activity was measured by the radio-isotope method by the increase of the free amino groups or by the decrease of the catalase activity, using labelled catalase as a substrate. It was found that the initial step of catalase degradation occurs in the enzyme localized in the inner membrane as well as in the mitochondrial matrix and that the total degradation of catalase is completed in the lysosomal fraction of rat liver.  相似文献   

5.
We have purified from beef liver an enzyme which decarbamoylates carbamoyl-hemoglobin and to a much lesser extent carbamoyl histones. Carbamoyl casein was a poor substrate while carbamoyl trypsin, fibrinogen and ovoalbumin were not affected. The optimal pH is 7.4. Addition of Mg++, Mn++ or Ca++ was without effect. On testing citrulline as a substrate we found high activity leading us to suspect that the activity of the decarbamoylase preparation was due to contaminating ornithine transcarbamoylase activity. Evidence for this is the similar ratio of transcarbamoylase to decarbamoylase activities of both ornithine transcarbamoylase and of the purified preparation of decarbamoylase from beef liver. Also, delta-PALO, the specific inhibitor of ornithine transcarbamoylase inhibited both preparations to the same extent. Interestingly, ornithine transcarbamoylase from bacteria also has decarbamoylase activity while aspartic transcarbamoylase does not.  相似文献   

6.
CDP-diacylglycerol for polyglycerophosphatide biogenesis can be synthesized within rat liver mitochondria. This membrane-associated enzyme was predominantly located in the inner mitochondrial membrane. GTP had a significant effect in activating the microsomal CDP-diacylglycerol synthase, especially if the microsomes were preincubated with GTP in the presence of phosphatidic acid. This stimulatory effect of GTP on the microsomal enzyme was not detected in the mitochondrial fractions. The enzymes could be solubilized from the membrane fractions using CHAPS, and the detergent-soluble activity partially restored by addition of phospholipids. Mitochondrial and microsomal CDP-diacylglycerol synthase activity could be completely separated by anion-exchange column chromatography. The mitochondrial and microsomal CDP-diacylglycerol synthases appear to be two distinct enzymes with different localization and regulatory characteristics.  相似文献   

7.
The precursor polypeptides of a large subunit of succinate dehydrogenase and ornithine aminotransferase (the enzymes which are located in the mitochondrial inner membrane and matrix respectively) were synthesized as a larger molecular mass than their mature subunits, when rat liver RNA was translated in vitro. These precursor polypeptides were also detected in vivo in ascites hepatoma cells (AH-130 cells). When the 35S-labeled precursor polypeptides were incubated with isolated rat liver mitochondria at 30 degrees C in the presence of an energy-generating system, these two precursors were converted to their mature size and the 35S-labeled mature-size polypeptides associated with mitochondria. Furthermore, these mature-size polypeptides were recovered from their own locations, the inner mitochondrial membrane and the matrix. The precursor of ornithine aminotransferase incubated with rat liver mitochondria at 0 degree C was specifically and tightly bound to the surface of the mitochondria even in the presence of an uncoupler of oxidative phosphorylation. This precursor, bound to the mitochondria, was imported into the matrix when the mitochondria were reisolated and incubated at 30 degrees C in the presence of an energy-generating system, suggesting that a specific receptor may be involved in the binding of the precursor. The processing enzyme for both precursor polypeptides seemed to be located in the mitochondrial matrix and was partially purified from the mitochondria. A metal-chelating agent strongly inhibited the processing enzyme and the inhibition was recovered by the addition of Mn2+ or Co2+.  相似文献   

8.
The subcellular distribution of rat liver porin was investigated using the immunoblotting technique and monospecific antisera against the protein isolated from the outer membrane of rat liver mitochondria. Subfractionation of mitochondria into inner membranes, outer membranes and matrix fractions revealed the presence of porin only in the outer membranes. Porin was also not detected in highly purified subcellular fractions, including plasma membranes, nuclear membranes, Golgi I and Golgi II, microsomes and lysosomes. Thus, liver porin is located exclusively in the outer mitochondrial membrane.  相似文献   

9.
M. Levy  R. Toury 《BBA》1970,216(2):318-327
Study on the evolution of mitochondrial enzyme activities in hepatocyte during rat development

Some constitutive enzymes of the three isolated fractions of mitochondria outer membrane, inner membrane and matrix, have been investigated in rat hepatocyte during a period varying from the foetal state to the 15th day after birth.

In the three mitochondrial fractions, activities of the studied enzymes present different evolutions. In the matrix, the tricarboxylic enzyme activities have already reached their normal values before birth. In the outer membrane, the NADH-cytochrome c reductase activity increases regularly, in the same way as that of the endoplasmic reticulum NADH-cytochrome c reductase. In the inner membrane, the oxygen consumption is very low before birth, then increases suddenly from the 5th to the 8th day after birth, when it reaches the normal values. The limiting factor of the respiratory chain activities is neither cytochrome oxidase nor the first dehydrogenases.  相似文献   


10.
Glenn E 《Plant physiology》1977,60(1):122-126
The spatially separated forms of ornithine transcarbamoylase (EC 2.1.3.3) of different molecular weights coexist in sugarcane (Saccharum sp.). The smaller form of the enzyme (mol wt 79,000) appears to be cytoplasmic, while a larger form (mol wt 224,000) sedimented with mitochondria. The Km of the cytoplasmic enzyme for ornithine was 3.11 mm, while the enzyme in the mitochondrial fraction had a Km of 0.50 mm for this substrate; both enzymes had similar affinity for carbamoyl phosphate (0.12 mm). Characteristics of the smaller ornithine transcarbamoylase are in keeping with a predominantly catabolic function, those of the enzyme which sediments with mitochondria, with an anabolic function. Only the mitochondrial enzyme was regulated in vivo by exogenous arginine.  相似文献   

11.
Two separate pools of glyoxalase II were demonstrated in rat liver mitochondria, one in the intermembrane space and the other in the matrix. The enzyme was purified from both sources by affinity chromatography on S-(carbobenzoxy)glutathione-Affi-Gel 40. From both crude and purified preparations polyacrylamide gel-electrophoresis resolved multiple forms of glyoxalase II, two from the intermembrane space and five from the matrix. Among the thioesters of glutathione tested as substrates, S-D-lactoylglutathione was hydrolyzed most efficiently by the enzymes from both sources. Significant differences were observed in the specificities between the intermembrane space and matrix enzymes with S-acetoacetylglutathione, S-acetylglutathione, S-propionylglutathione and S-succinylglutathione as substrates. Pure glyoxalase II from rat liver cytosol was chemically polymerized and used as antigen. Antibodies were raised in rabbits and the antiserum was used for comparison of the two purified mitochondrial enzymes with cytosolic glyoxalase II by immunoblotting. The enzyme purified from the intermembrane space cross-reacted with the antiserum, but the matrix glyoxalase II did not. The results give evidence for the presence in rat liver mitochondria of two species of glyoxalase II with differing characteristics. Only the enzyme from the intermembrane space appears to resemble the cytosolic glyoxalase II forms.  相似文献   

12.
Monoclonal antibodies against rat liver mitochondrial phospholipase A2 were used to develop a rapid immunoaffinity chromatography for enzyme purification. The purified enzyme showed a single band upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The sequence of the N-terminal 24 amino acids was determined. This part of the sequence showed only 25% homology with that of rat pancreatic phospholipase A2 but was 96% identical to that of rat platelet and rat spleen membrane-associated phospholipase A2. These enzymes are distinguished from pancreatic phospholipases A2 by the absence of Cys-11. In rat liver phospholipase A2 activity has been reported in various subcellular fractions. All of these require Ca2+ and have a pH optimum in the alkaline region, but little is known about the structural relationship and quantitative distribution of these enzymes. We have investigated these points after solubilization of the phospholipase A2 activity from total homogenates and crude subcellular fractions by extraction with 1 M potassium chloride. Essentially all of the homogenate activity could be solubilized by this procedure indicating that the enzymes occurred in soluble or peripherally membrane-associated form. Gel filtration and immunological cross-reactivity studies indicated that phospholipases A2 solubilized from membrane fractions shared a common epitope with the mitochondrial enzyme. The quantitative distribution of the immunopurified enzyme activity among subcellular fractions followed closely that of the mitochondrial marker cytochrome c oxidase. Rat liver cytosol contained additional Ca2+-dependent and -independent phospholipase activities.  相似文献   

13.
1. A subcellular fractionation procedure for frog liver is reported and validated by the distribution pattern of several marker enzymes, also in comparison with rat liver. 2. The subcellular distribution of tyrosine aminotransferase was investigated in frog liver as compared to rat liver: a different distribution of the enzyme was observed, being the activity mostly recovered in mitochondrial and cytosolic compartments. 3. Results indicate that mitochondrial tyrosine aminotransferase of both frog and rat liver is a matrix enzyme, even if differences are observed concerning its release from the organelles upon detergent treatment.  相似文献   

14.
Experiments were carried out to locate carbamoyl phosphate synthetase (CPS) in rat liver by direct immunoferritin labeling. By using Epon sections treated with sodium methoxide, homogenates or mitochondrial and mitoplast fractions, carbamoyl phosphate synthetase was found homogeneously distributed in the mitochondrial matrix. Immunoferritin was detected with high resolution which permits the identification of individual molecules. Measurements were made of the number of ferritin particles per square micron of mitochondrial surface, providing a novel and independent assessment of the carbamoyl phosphate synthetase concentration.  相似文献   

15.
Ultrastructural localization of three mitochondrial beta-oxidation enzymes, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase in rat liver was studied by a post-embedding immunocytochemical technique. Rat liver was fixed by perfusion. Vibratome sections (100 micron thick) were embedded in Lowicryl K4M. Ultrathin sections were separately incubated with antibody to each enzyme, followed by protein A-gold complex. Gold particles representing the antigenic sites for all enzymes examined were confined exclusively to mitochondria of hepatocytes and other sinus-lining cells. Peroxisomes were consistently negative for the immunolabelling. In the mitochondria the gold particles were localized in the matrical side of inner membrane. The control experiments confirmed the specificity of the immunolabelling. The results firstly indicate that the mitochondrial beta-oxidation enzymes are present in the matrix of mitochondria and associated with the inner membrane.  相似文献   

16.
CPT (carnitine palmitoyltransferase) 1 and CPT2 regulate fatty acid oxidation. Recombinant rat CPT2 was isolated from the soluble fractions of bacterial extracts and expressed in Escherichia coli. The acyl-CoA chain-length-specificity of the recombinant CPT2 was identical with that of the purified enzyme from rat liver mitochondrial inner membranes. The Km for carnitine for both the mitochondrial preparation and the recombinant enzyme was identical. In isolated mitochondrial outer membranes, cardiolipin (diphosphatidylglycerol) increased CPT1 activity 4-fold and the Km for carnitine 6-fold. It decreased the Ki for malonyl-CoA inhibition 60-fold, but had no effect on the apparent Km for myristoyl-CoA. Cardiolipin also activated recombinant CPT2 almost 4-fold, whereas phosphatidylglycerol, phosphatidylserine and phosphatidylcholine activated the enzyme 3-, 2- and 2-fold respectively. Most of the recombinant CPT2 was found to have substantial interaction with cardiolipin. A model is proposed whereby cardiolipin may hold the fatty-acid-oxidizing enzymes in the active functional conformation between the mitochondrial inner and outer membranes in conjunction with the translocase and the acyl-CoA synthetase, thus combining all four enzymes into a functional unit.  相似文献   

17.
Protein degradation in rat liver during post-natal development.   总被引:4,自引:2,他引:2       下载免费PDF全文
Protein degradation rates for liver subcellular and submitochondrial fractions from neonatal (8-day), weanling (25-day) and adult rats were estimated by the double-isotope method with NaH14CO3 and [3H] arginine as the radiolabelled precursors [Dice, Walker, Byrne & Cardiel (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 2093-2097]. Decreased protein degradation rates were found during post-natal development for homogenate, nuclear, mitochondrial, lysosomal and microsomal proteins. A decrease in degradation rates for the immunoisolated subunits of monoamine oxidase and pyruvate dehydrogenase was also observed in neonatal and weanling rats respectively. The results suggest coordinate degradation of the subunits of the multi-subunit enzyme pyruvate dehydrogenase. Pyruvate dehydrogenase has a faster rate of degradation in adult rat liver than does cytochrome oxidase. Data analysis suggests heterogeneity of protein degradation rates in the mitochondrial outer membrane and intermembrane space fractions at each developmental stage but not in the mitochondrial inner membrane or matrix fractions. Results obtained for protein degradation rates in adult rat liver by the method of Burgess, Walker & Mayer [(1978) Biochem. J. 176, 919-926] in general confirmed the results obtained for the adult rat liver by the above method. No evidence of a subunit-size relationship for protein degradation was found for proteins in any subcellular or submitochondrial fraction.  相似文献   

18.
Summary Ultrastructural localization of three mitochondrial β-oxidation enzymes, enoyl-CoA hydratase, 3-hydroxyacyl-CoA dehydrogenase, and 3-ketoacyl-CoA thiolase in rat liver was studied by a post-embedding immunocytochemical technique. Rat liver was fixed by perfusion. Vibratome sections (100 μm thick) were embedded in Lowicryl K4M. Ultrathin sections were separately incubated with antibody to each enzyme, followed by protein A-gold complex. Gold particles representing the antigenic sites for all enzymes examined were confined exclusively to mitochondria of hepatocytes and other sinus-lining cells. Peroxisomes were consistently negative for the immunolabelling. In the mitochondria the gold particles were localized in the matrical side of inner membrane. The control experiments confirmed the specificity of the immunolabelling. The results firstly indicate that the mitochondrial β-oxidation enzymes are present in the matrix of mitochondria and associated with the inner membrane.  相似文献   

19.
The acylation of sn-glycerol 3-phosphate with palmityl-CoA was compared in mitochondria and microsomes isolated from rat liver. Polymyxin B, an antibiotic known to alter bacterial membrane structure, stimulated the mitochondrial glycerophosphate acyltransferase but inhibited the microsomal enzyme. When mitochondrial and microsomal fractions were incubated at 4–6 °C for up to 4 h, the mitochondrial enzyme remained virtually unchanged while the microsomal enzyme lost about one-half of its activity. Incubations at higher temperatures also revealed that the mitochondrial enzyme was comparatively more stable under the conditions employed. The mitochondrial acyltransferase showed no sensitivity to bromelain, papain, Pronase, and trypsin, all of which strongly inhibited the microsomal enzyme. The differential sensitivity to trypsin was observed in mitochondria and microsomes isolated from other rat organs. However, the liver mitochondrial glycerophosphate acyltransferase was inhibited by trypsin in the presence of either 0.05% deoxycholate or 0.1% Triton X-100. The trypsin sensitivity of the mitochondrial glycerophosphate acyltransferase in the presence of detergent was not due to the presence, in the mitochondrial fraction, of a trypsin inhibitor which became inactivated by Triton X-100 or deoxycholate. The results suggest that the catalytic site of mitochondrial glycerophosphate acyltransferase is not exposed to the cytosolic side and it is located in the inner aspect of the outer membrane.  相似文献   

20.
This paper reports on the discovery of a protein kinase activity associated with the inner membrane of mammalian mitochondria. The enzyme does not respond to addition of cyclic AMP or cyclic GMP and has a preference for whole histone as phosphate acceptor. Some standard assay systems for the cyclic nucleotide-dependent cytosol protein kinases would be unable to pick up this activity of the orthophosphate concentration is higher than 25 mM and the pH or the assay lower than pH 6.5. The enzyme described here has an apparent pH optimum of 8.5. Activity in liver mitochondria is not evident unless the mitochondria are disrupted by either sonication or freezing and thawing. Distribution of kinase activity in centrifugal fractions of both liver and heart mitochondrial sonicates was parallel to that of the two inner membrane marker enzymes succinic dehydrogenase and cytochrome oxidase and quite different from that of the matrix enzyme malic dehydrogenase. Experiments with preparations enriched in outer or inner membranes confirmed the contention that this enzyme is located on the inner membrane. Since disruption of the inner membrane by a freeze-thaw treatment (after the outer membrane had been disrupted by swelling in phosphate) was necessary for full expression of activity by this enzyme, the tentative conclusion was reached that substrate is accepted only from the matrix side of the inner membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号