首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Flora》2006,201(7):547-554
We studied the field response of Robinia pseudoacacia L. to light, total soil nitrogen, available soil phosphorus and soil pH. Results indicated that there was very strong clonal integration between mother and daughter ramets. Mother ramets can provide nitrogen and phosphorus to daughter ramets sufficient for their continued growth through strong clonal integration, but cannot provide enough photosynthate. With clonal integration, soil nitrogen and phosphorus availability had no effect on biomass allocation to roots, number of ramets and length of connection roots. Biomass allocation to roots increased markedly and responded to nitrogen and phosphorus availability, when the connections were severed. Light had a significant effect on the percent of biomass allocation to leaves and number of ramets, but no effect on the length of connection roots. Daughter ramets allocated more resources to leaves, and clones placed more daughter ramets in high light patches than in low light patches. Soil pH had a significant effect on ramet number and connection root length. Clones concentrated in alkaline patches and escaped from acid patches through selective placement of daughter ramets and changing the length of connection roots. We suggest that the clonal integration may be very strong and provide sufficient soil resources to daughter ramets, then affect the daughter ramets’ morphology and placement, if the size of a specific ramet is significantly larger than the other ramets in an arbor clone.  相似文献   

2.
The growth pattern of the root system of young rubber trees (Hevea brasiliensis) was studied in relation to shoot development over a period of 3 months. Temporal and spatial variations in elongation and branching processes were examined for the different root types, by means of root observation boxes. Shoot growth was typically rhythmic. Root development was periodic and related to leaf expansion. Root elongation was depressed during leaf growth, whereas branching was enhanced. Consequently, highly branched areas with vigorous secondary roots alternated along the taproot with poorly branched areas with shorter roots. Root types were not affected to the same degree by shoot competition: during leaf expansion, taproot growth was just depressed but remained continuous, the emergence and elongation rates of secondary roots were significantly affected and the elongation rates of tertiary roots fell to zero. These results were consistent with the hypothesis that root growth is related to competition for assimilates and to the sink strength of the different root types, whereas root branching appeared to be promoted by leaf development.  相似文献   

3.
Segregation of roots is frequently observed in competing root systems. However, recently, intensified root growth in response to a neighbouring plant has been described in pot experiments [Gersani M, Brown J S, O'Brien E E, Maina G M and Abramsky Z 2001. J. Ecol. 89, 660–669]. This paper examines whether intense root growth towards a neighbour (aggregation) plays a role in competitive interactions between plant species from open nutrient-poor mid-European sand ecosystems. In a controlled field-competition experiment, root distribution patterns of intra- and interspecific pairs as well as single control plants of Corynephorus canescens, Festuca psammophila, Hieracium pilosella, Hypochoeris radicata and Conyza canadensis were investigated after one growing season. Under intraspecific competition plants tended to segregate their root systems, while under interspecific competition most species tended to aggregate roots towards their neighbours even at the expense of root development at the opposite competition-free side of the target. Preference of a root aggregation strategy over the occupation of competition-free soil in interspecific competition emphasizes the importance of contesting between individuals in relation to mere resource acquisition. It is suggested that in the presence of a competitor the plants might use root aggregation as a defensive reaction to maintain a strong competitive response and exclusive access to the resources of already occupied soil volumes.  相似文献   

4.
Rhizobial symbiosis is known to increase the nitrogen availability in the rhizosphere of legumes. Therefore, it has been hypothesized that other plants’ roots should forage towards legume neighbours, but avoid non-legume neighbours. Yet, root distribution responding to legume plants as opposed to non-legumes has not yet been rigorously tested and might well be subject to integration of multiple environmental cues.In this study, wedevised an outdoor mesocosm experiment to examine root distributions of the two plant species Pilosella officinarum and Arenaria serpyllifolia in a two-factorial design. While one factor was ‘neighbour identity’, where plants were exposed to different legume or non-legume neighbours, the other factor was ‘nitrogen supply’. In the latter the nutrient-poor soil was supplemented with either nitrogen-free or with nitrogen-containing fertilizer.Unexpectedly, of all treatments that included a legume neighbour (eight different species or factor combinations), we found merely one case of root aggregation towards a legume neighbour (P. officinarum towards Medicago minima under nitrogen-fertilized conditions). In this very treatment, also P. officinarum root–shoot allocation was strongly increased, indicating that neighbour recognition is coupled with a contesting strategy.Considering the various response modes of the tested species towards the different legume and non-legume neighbours, we can conclude that roots integrate information on neighbour identity and resource availability in a complex manner. Especially the integration of neighbour identity in root decisions must be a vital aptitude for plants to cope with their complex biotic and abiotic environment in the field.  相似文献   

5.
Primary root growth dynamics and lateral root development of dark- and light grown cotton seedlings (Gossypium hirsutum L., cv. Acala SJ-2) were studied under control and salinity stress conditions. The seedlings were grown by two methods: A) in paper-lined, vermiculite-filled beakers with the plants growing between the paper and the glass wall (Gladish and Rost, 1993), and B) in hydroponics after germination and initial growth in germination paper rolls saturated with the treatment solutions (Kent and Läuchli, 1985). After germination, daily primary root elongation rate gradually incrased to a maximum, then gradually declined to close to zero for dark-grown seedlings, or to sustained rates of about 10 mm per day for light-grown control plants. Salinity stress delayed primary root growth and reduced peak elongation rates, without changing the general primary root growth pattern. These results suggest that salinity changed the time-scale, but did not modify the normal developmental sequence. Lateral root growth was more inhibited by salinity than primary root growth. In addition, elongation of lateral roots was more inhibited by salinity than their initiation and emergence. Light exposure of the shoot favored both sustained primary root growth from 7 days after planting, and lateral root emergence and growth. Salinity effects were more severe on seedlings germinated and grown in hydroponics (method B) than on vermiculite-grown plants (method A). These results emphasize the importance of growing conditions for the NaCl-induced effects on cotton root development. In addition, the differential effects of salinity on primary and lateral roots became evident, pointing to diverse control mechanisms for the development of these root types.  相似文献   

6.
Game-theoretic models predict that plants with root systems that avoid belowground competition will be displaced by plants that overproduce roots in substrate shared with competitors. Despite this, both types of root response to neighbours have been documented. We used two co-occurring clonal species (Glechoma hederacea and Fragaria vesca) with contrasting root responses to neighbours (avoidance of competition and contesting of resources, respectively) to examine whether functional variation in other traits affected the success of each rooting strategy, leading to a different outcome from that predicted on the basis of root behaviour alone. Vegetative propagation rates, morphology and biomass allocation patterns were examined when each species was challenged with competition from physically separate ramets with either the same rooting strategy (intraclonal competition) or the contrasting rooting strategy (interspecific competition). Contrary to the predictions of game-theoretic models, the species that exhibits avoidance of root competition (Glechoma) was not competitively inferior to the species that does not (Fragaria). Glechoma achieved greater total mass in the interspecific treatment than in the intraclonal treatment. However, Fragaria did not experience more intense competition from Glechoma than it did in the intraclonal treatment. Strong interference between the two species appeared to be avoided because Glechoma invested preferentially in rapid exploitation of unoccupied space, whereas Fragaria invested in increasing the competitive ability and local persistence of established ramets. Our results suggest that interspecific trade-offs between traits related to competitive ability and resource exploitation can allow coexistence of species with contrasting rooting behaviours. Full assessment of the adaptive value of different root responses to neighbours therefore requires concurrent consideration of the combined effects of a wide array of functional traits.  相似文献   

7.
Arabidopsis plants responding to phosphorus (P) deficiency increase lateral root formation and reduce primary root elongation. In addition the number and length of root hairs increases in response to P deficiency. Here we studied the patterns of radical oxygen species (ROS) in the roots of Arabidopsis seedlings cultured on media supplemented with high or low P concentration. We found that P availability affected ROS distribution in the apical part of roots. If plants were grown on high P medium, ROS were located in the root elongation zone and quiescent centre. At low P ROS were absent in the elongation zone, however, their synthesis was detected in the primary root meristem. The proximal part of roots was characterized by ROS production in the lateral root primordia and in elongation zones of young lateral roots irrespective of P concentration in the medium. On the other hand, plants grown at high or low P differed in the pattern of ROS distribution in older lateral roots. At high P, the elongation zone was the primary site of ROS production. At low P, ROS were not detected in the elongation zone. However, they were present in the proximal part of the lateral root meristem. These results suggest that P deficiency affects ROS distribution in distal parts of Arabidopsis roots. Under P-sufficiency ROS maximum was observed in the elongation zone, under low P, ROS were not synthesized in this segment of the root, however, they were detected in the apical root meristem.  相似文献   

8.
Field root investigations are often limited by the static nature of classical observations, resulting in the need to develop alternative methodologies that allow dynamic interpretation of root architecture variability on the basis of static measurements. The objectives of this work were (i) to evaluate the use of selected morphological indicators, namely root apical diameter (Da) and the length of the apical unbranched zone (LAUZ), in predicting primary and lateral root growth patterns in banana trees, (ii) to propose a field methodology for the assessment of root dynamics based on static measurements. Banana trees (Musa acuminata cv `Grande Naine') were grown in 5 rhizotrons as well as in field conditions, respectively on pouzzolane and Mollic Andosols. In rhizotrons, root growth analysis was carried out by reporting root elongation, Da and LAUZ, three times a week. In field conditions, 4 series of excavations were made at three-week intervals. Apart from root growth rate, measurements were the same as those in the rhizotrons. LAUZ was confirmed as a stable and good predictor of root growth rate for the different types of roots. In the rhizotrons, the root growth of lateral roots was found to be well correlated to the product of Da and the growth rate of the bearing root. Evaluation in field conditions from static observations attested consistent relationships between measured and predicted root length for lateral roots (slopes close to 1:1). The apical diameter can be considered as a good indicator of root growth potential, while actual lateral root growth depends on the bearing root elongation rate. Morphological static indicators calibrated from growth dynamics in rhizotrons are of major interest in explaining growth variability in field conditions. Especially the `growth rate-LAUZ' relationship can be considered a useful tool in interpreting field patterns of growing roots in relation to various soil conditions.  相似文献   

9.
A plant's best strategy for acquiring resources may often depend on the identity of neighbours. Here, I ask whether plants adjust their strategy to local relatedness: individuals may cooperate (reduce competitiveness) with kin but compete relatively intensely with non-kin. In a greenhouse experiment with Ipomoea hederacea, neighbouring siblings from the same inbred line were relatively uniform in height; groups of mixed lines, however, were increasingly variable as their mean height increased. The reproductive yield of mixed and sibling groups was similar overall, but when adjusted to a common mean height and height inequality, the yield of mixed groups was significantly less. Where this difference in yield was most pronounced (among groups that varied most in height), mixed groups tended to allocate more mass to roots than comparable sibling groups, and overall, mixed groups produced significantly fewer seeds per unit mass of roots. These results suggest that, from the group perspective, non-kin may have wasted resources in below-ground competition at the expense of reproduction; kin groups, on the other hand, displayed the relative efficiency that is expected of reduced competitiveness.  相似文献   

10.
The plant root system is highly sensitive to nutrient availability and distribution in the soil. For instance, root elongation is inhibited when grown in high nitrate concentrations. To decipher the mechanism underlying the nitrate-induced inhibition of root elongation, the involvement of the plant hormone auxin in nitrate-dependent root elongation of maize was investigated. Root growth, nitrogen and nitrate concentrations, and indole-3-acetic acid (IAA) concentrations in roots and in phloem exudates of maize grown under varying nitrate concentrations were analyzed. Total N and nitrate concentrations in shoots and roots increased and elongation of primary, seminal and crown roots were inhibited with increasing external nitrate from 0.05 to 5 mM. High nitrate-inhibited root growth resulted primarily from the reduced cell elongation and not from changes in meristem length. IAA concentrations in phloem exudates reduced with higher nitrate supply. Inhibition of root growth by high nitrate was closely related to the reduction of IAA levels in roots, especially in the sections close to root tips. Exogenous NAA and IAA restored primary root growth in high nitrate concentrations. It is concluded that the inhibitory effect of high nitrate concentrations on root growth may be partly attributed to the decrease in auxin concentrations of roots.  相似文献   

11.
It has been hypothesized that plants compete actively by allocating more resources to competitive organs and activities in response to neighbours, and this can reduce population performance, such as yield in crops. Root proliferation and reduced aboveground growth in response to the presence of roots of a neighbouring plant in experiments with vs. without root dividers between pairs of plants has been reported in several studies, but this result has been criticized as a possible artefact resulting from differences in soil volume available to roots in the two treatments. To address this possible confounding effect, we conducted a pot experiment with a traditional landrace and a modern cultivar of wheat (Triticum aestivum). Pairs of spring wheat plants were grown in pots with two types of root dividers (a) film, which completely divides the soil into two volumes, and (b) fine nylon net, through which roots cannot grow but chemical cues can move. We hypothesized that the root proliferation in response to root interactions would reduce aboveground growth. Wheat plants produced significantly more belowground and less aboveground biomass when interacting through the net dividers than when roots were completely separated. This effect was smaller, but still significant, in the modern cultivar. Our results confirm neighbour-induced root proliferation resulting in a so-called “tragedy of the commons” in an important crop species. The results also suggest that this response has decreased over the course of crop breeding, due to inadvertent “group selection”, and that there is further potential to increase yields by reducing or eliminating this response.  相似文献   

12.
Zhao DY  Tian QY  Li LH  Zhang WH 《Annals of botany》2007,100(3):497-503
BACKGROUND AND AIMS: Root growth and development are closely dependent upon nitrate supply in the growth medium. To unravel the mechanism underlying dependence of root growth on nitrate, an examination was made of whether endogenous nitric oxide (NO) is involved in nitrate-dependent growth of primary roots in maize. METHODS: Maize seedlings grown in varying concentrations of nitrate for 7 d were used to evaluate the effects on root elongation of a nitric oxide (NO) donor (sodium nitroprusside, SNP), a NO scavenger (methylene blue, MB), a nitric oxide synthase inhibitor (N(omega)-nitro-L-arginine, L-NNA), H(2)O(2), indole-3-acetic acid (IAA) and a nitric reducatse inhibitor (tungstate). The effects of these treatments on endogenous NO levels in maize root apical cells were investigated using a NO-specific fluorescent probe, 4, 5-diaminofluorescein diacetate (DAF-2DA) in association with a confocal microscopy. KEY RESULTS: Elongation of primary roots was negatively dependent on external concentrations of nitrate, and inhibition by high external nitrate was diminished when roots were treated with SNP and IAA. MB and L-NNA inhibited root elongation of plants grown in low-nitrate solution, but they had no effect on elongation of roots grown in high-nitrate solution. Tungstate inhibited root elongation grown in both low- and high-nitrate solutions. Endogenous NO levels in root apices grown in high-nitrate solution were lower than those grown in low-nitrate solution. IAA and SNP markedly enhanced endogenous NO levels in root apices grown in high nitrate, but they had no effect on endogenous NO levels in root apical cells grown in low-nitrate solution. Tungstate induced a greater increase in the endogenous NO levels in root apical cells grown in low-nitrate solution than those grown in high-nitrate solution. CONCLUSIONS: Inhibition of root elongation in maize by high external nitrate is likely to result from a reduction of nitric oxide synthase-dependent endogenous NO levels in maize root apical cells.  相似文献   

13.
Plants have evolved some mechanisms to maximize the efficiency of phosphorus acquisition.Changes in root architecture are one such mechanism. When Fraxinus mandshurica Rupr. seedlings were grown under conditions of low phosphorus availability, the length of cells in the meristem zone of the lateral roots was longer, but the length of cells in the elongation and mature zones of the lateral roots was shorter,compared with seedlings grown under conditions of high phosphorus availability. The elongation rates of primary roots increased as phosphorus availability increased, but the elongation rates of the branched zones of the primary roots decreased. The number of lateral root primordia and the length of the lateral roots decreased as phosphorus availability increased. The topological index (altitude slope) decreased as phosphorus availability increased, suggesting that root architecture tended to be herringbone-like when seedlings were grown under conditions of low phosphate availability. Herringbone-like root systems exploit nutrients more efficiently, but they have higher construction costs than root systems with a branching pattern.  相似文献   

14.
Some clonal plants can spread their ramet populations radially, and soil heterogeneity and clonal integration may greatly affect the establishment of these types of populations. We constructed Alternanthera philoxeroides populations with a radial ramet aggregation, allowing old ramets of clonal fragments to concentrate in central pots and younger ramets to root in peripheral pots. The peripheral pots were supplemented either with three different levels (high, medium and low) of soil nutrients to simulate a heterogeneous soil environment, or only one medium level of soil nutrients to simulate a homogeneous environment. Stolon connections between the central older ramets and the peripheral younger ramets were left intact or severed to test the effect of clonal integration. The maintenance of stolon connection could induce the division of labor between different‐aged ramets, by increasing the root investment in central ramets and the above‐ground growth in peripheral ramets. The maintenance of stolon connection could improve the growth of the central and peripheral ramets, clonal fragments and even the whole population. However, the positive consequence in peripheral ramets and whole fragments was only detected in the high‐nutrient patch of heterogeneous treatment. In sum, in the population with the radial ramet aggregation, clonal integration can play a key role in the rapid recruitment of young ramets of A. philoxeroides fragments, as well as the expansion of the whole population. The magnitude of clonal integration also became more obvious in the peripheral young ramets and whole fragments that experienced high‐nutrient patches.  相似文献   

15.
Game theory predicts that the evolutionarily stable level of root production is greater for plants grown with neighbours compared to plants grown alone, even when the available resources per plant are constant. This follows from the fact that for plants grown alone, new roots compete only with other roots on the same plant, whereas for multiple plants grown in a group, new roots can also compete with the roots of other plants, thereby potentially acquiring otherwise unavailable resources at their neighbours’ expense. This phenomenon, which results in plants grown with neighbours over-proliferating roots at the expense of above-ground biomass, has been described as a ‘tragedy of the commons’, and requires that plants can distinguish self from non-self tissues. While this game theoretical model predicts the evolutionarily stable strategies of individual plants, it has only been tested on average allocation patterns of groups of plants. This is problematic, because average patterns can appear to reflect a tragedy of the commons, even when none has occurred. In particular, assuming (1) a decelerating relationship between individual plant biomass and the amount of resources available, and (2) greater size inequality in plants grown with neighbours compared to plants grown alone (due to asymmetric competition), then plants grown with neighbours should, at least on average, be smaller than plants grown alone. This is a manifestation of ‘Jensen’s Inequality’, which states that for decelerating functions, the average value of the function is less than the function of the average value. We suggest that Jensen’s Inequality should serve as an appropriate null hypothesis for examining biologically-based explanations of changes in biomass allocation strategies.  相似文献   

16.
Zhao H  Hertel R  Ishikawa H  Evans ML 《Planta》2002,216(2):293-301
The plant hormone auxin affects cell elongation in both roots and shoots. In roots, the predominant action of auxin is to inhibit cell elongation while in shoots auxin, at normal physiological levels, stimulates elongation. The question of whether the primary receptor for auxin is the same in roots and shoots has not been resolved. In addition to its action on cell elongation in roots and shoots, auxin is transported in a polar fashion in both organs. Although auxin transport is well characterized in both roots and shoots, there is relatively little information on the connection, if any, between auxin transport and its action on elongation. In particular, it is not clear whether the protein mediating polar auxin movement is separate from the protein mediating auxin action on cell elongation or whether these two processes might be mediated by one and the same receptor. We examined the identity of the auxin growth receptor in roots and shoots by comparing the response of roots and shoots of the grass Zea mays L. and the legume Vigna mungo L. to indole-3-acetic acid, 2-naphthoxyacetic acid, 4,6-dichloroindoleacetic acid, and 4,7-dichloroindoleacetic acid. We also studied whether or not a single protein might mediate both auxin transport and auxin action by comparing the polar transport of indole-3-acetic acid and 2-naphthoxyacetic acid through segments from Vigna hypocotyls and maize coleoptiles. For all of the assays performed (root elongation, shoot elongation, and polar transport) the action and transport of the auxin derivatives was much greater in the dicots than in the grass species. The preservation of ligand specificity between roots and shoots and the parallels in ligand specificity between auxin transport and auxin action on growth are consistent with the hypothesis that the auxin receptor is the same in roots and shoots and that this protein may mediate auxin efflux as well as auxin action in both organ types.  相似文献   

17.
In an earlier study (Evans, Ishikawa & Estelle 1994, Planta 194, 215-222) we used a video digitizer system to compare the kinetics of auxin action on root elongation in wild-type seedlings and seedlings of auxin response mutants of Arabidopsis thaliana (L.) Heynh. We have since modified the system software to allow determination of elongation on opposite sides of vertical or gravistimulated roots and to allow continuous measurement of the angle of orientation of sequential subsections of the root during the response. We used this technology to compare the patterns of differential growth that generate curvature in roots of the Columbia ecotype and in the mutants axr1-3, axr1-12 and axr2, which show reduced gravitropic responsiveness and reduced sensitivity to inhibition by auxin. The pattern of differential growth during gravitropism differed in roots of wild-type and axr1 seedlings. In wild-type roots, initial curvature resulted from differential inhibition of elongation in the distal elongation zone (DEZ). This was followed by an acceleration of elongation along the top side of the DEZ. In roots of axr1-3, curvature resulted from differential stimulation of elongation whereas in roots of axr1-12 the response was variable. Roots of axr2 did not exhibit gravitropic curvature. The observation that the pattern of differential growth causing curvature is dramatically altered by a change in sensitivity to auxin is consistent with the classical Cholodny-Went theory of gravitropism which maintains that differential growth patterns induced by gravistimulation are mediated primarily by gravi-induced shifts in auxin distribution. The new technology introduced with this report allows automated determination of stimulus response patterns in the small but experimentally popular roots of Arabidopsis.  相似文献   

18.
Root sprouting in Rumex acetosella under different nutrient levels   总被引:5,自引:0,他引:5  
Growth of Rumex acetosella, a root sprouting plant, was studied in a pot experiment. Each plant of R. acetosella consisted of two ramets which were interconnected by a root about 9 cm long. One of the ramets was placed in a compartment with nutrient-rich soil, the other with nutrient-poor soil. The root connection between the ramets either remained intact or was severed at the nutrient interface after planting. Growth of new roots was prevented at the nutrient interface.The presence of a connection between the ramets did not affect biomass or shoot production in either soil compartment, indicating a poor integration of the interconnected plant systems. In the nutrient-rich environment, two to four times more shoots and biomass were produced than in the low nutrient regime. A large proportion of buds initiated on roots remained dormant, forming a bud bank. When the number of shoots or buds was expressed per g of root dry weight or per m of root length, the nutrient response was no longer evident or, in a few cases, a significant effect in the opposite direction was obtained. These results show that the greater production of buds and shoots in the nutrient-rich environment reflected an allometric relationship between root biomass and the number of buds and shoots initiated on the roots.  相似文献   

19.
Summary Using a vibrating probe technique, four distinct electric patterns around growing cress roots were observed. The growth rate of the root with a particular one of them was apparently faster than that with the others. No direct correlation between the intensity of electric field and the root growth rate could be found. When gravistimulation was applied to the root, the electric pattern changed to be suitable for elongation of the gravitropic curvature. It is probable that change in electric pattern is related to growth of the root under a given environment.  相似文献   

20.
The reduction in growth of maize (Zea mays L.) seedling primary roots induced by salinization of the nutrient medium with 100 millimolar NaCl was accompanied by reductions in the length of the root tip elongation zone, the length of fully elongated epidermal cells, and the apparent rate of cell production: Each was partially restored when calcium levels in the salinized growth medium were increased from 0.5 to 10.0 millimolar. We investigated the possibility that the inhibition of elongation growth by salinity might be associated with an inhibition of cell wall acidification, such as that which occurs when root growth is inhibited by IAA. A qualitative assay of root surface acidification, using bromocresol purple pH indicator in agar, showed that salinized roots, with and without extra calcium, produced a zone of surface acidification which was similar to that produced by control roots. The zone of acidification began 1 to 2 millimeters behind the tip and coincided with the zone of cell elongation. The remainder of the root alkalinized its surface. Kinetics of surface acidification were assayed quantitatively by placing a flat tipped pH electrode in contact with the elongation zone. The pH at the epidermal surfaces of roots grown either with 100 millimolar NaCl (growth inhibitory), or with 10 millimolar calcium ± NaCl (little growth inhibition), declined from 6.0 to 5.1 over 30 minutes. We conclude that NaCl did not inhibit growth by reducing the capacity of epidermal cells to acidify their walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号