首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the effect of different solvents on the dynamics of Rhizomucor miehei lipase. Molecular dynamics simulations were performed in water, methyl hexanoate, and cyclohexane. Analysis of the 400-ps trajectories showed that the solvent has a pronounced effect on the geometrical properties of the protein. The radius of gyration and total accessibility surface decrease in organic solvents, whereas the number of hydrogen bonds increases. The essential motions of the protein in different solvents can be described in a low-dimensional "essential subspace," and the dynamic behavior in this subspace correlates with the polarity of the solvent. Methyl hexanoate, which is a substrate for R. miehei lipase, significantly increases the fluctuations in the active-site loop. During the simulation, a methyl hexanoate entered the active-site groove. This observation provides insight into the possible docking mechanism of the substrate.  相似文献   

2.
The conformational stability and activity of Candida antarctica lipase B (CALB) in the polar and nonpolar organic solvents were investigated by molecular dynamics and quantum mechanics/molecular mechanics simulations. The conformation change of CALB in the polar and nonpolar solvents was examined in two aspects: the overall conformation change of CALB and the conformation change of the active site. The simulation results show that the overall conformation of CALB is stable in the organic solvents. In the nonpolar solvents, the conformation of the active site keeps stable, whereas in the polar solvents, the solvent molecules reach into the active site and interact intensively with the active site. This interaction destroys the hydrogen bonding between Ser105 and His224. In the solvents, the activation energy of CALB and that of the active site region were further simulated by quantum mechanics/molecular mechanics simulation. The results indicate that the conformation change in the region of active sites is the main factor that influences the activity of CALB.  相似文献   

3.
The stochastic boundary molecular dynamics methodology is applied to the active site of the enzyme lysozyme. A comparison is made of in vacuo dynamics results from the stochastic boundary method and a full conventional molecular dynamics simulation of lysozyme. Excellent agreement between the two approaches is obtained. The influence of solvent on the residues in the active site region is explored and it is shown that both the structure and dynamics are affected. Of particular importance for the structure of the protein is the solvation of polar residues and the stabilization of like-charged ion pairs. The magnitude of the fluctuations is only slightly altered by the solvent; the overall increase in the root-mean-square fluctuations, relative to the vacuum run, is 11%. The solvent effect on dynamical properties is found not to be simply related to the solvent viscosity. Both the solvent exposure and dynamic aspects of protein-solvent interactions, including the relative time scales of the motions, are shown to play a role. The effects of the protein on solvent dynamics and structure are also observed to be significant. The solvent molecules around atoms in charged, polar and apolar side-chains show markedly different diffusion coefficients as well as exhibiting different solvation structures. One key example is the water around apolar groups, which is much less mobile than bulk water, or water solvating polar groups.  相似文献   

4.
Water plays an important role in enzyme structure and function in aqueous media. That role becomes even more important when one focuses on enzymes in low water media. Here we present results from molecular dynamics simulations of surfactant-solubilized subtilisin BPN' in three organic solvents (octane, tetrahydrofuran, and acetonitrile) and in pure water. Trajectories from simulations are analyzed with a focus on enzyme structure, flexibility, and the details of enzyme hydration. The overall enzyme and backbone structures, as well as individual residue flexibility, do not show significant differences between water and the three organic solvents over a timescale of several nanoseconds currently accessible to large-scale molecular dynamics simulations. The key factor that distinguishes molecular-level details in different media is the partitioning of hydration water between the enzyme and the bulk solvent. The enzyme surface and the active site region are well hydrated in aqueous medium, whereas with increasing polarity of the organic solvent (octane --> tetrahydrofuran --> acetonitrile) the hydration water is stripped from the enzyme surface. Water stripping is accompanied by the penetration of tetrahydrofuran and acetonitrile molecules into crevices on the enzyme surface and especially into the active site. More polar organic solvents (tetrahydrofuran and acetonitrile) replace mobile and weakly bound water molecules in the active site and leave primarily the tightly bound water in that region. In contrast, the lack of water stripping in octane allows efficient hydration of the active site uniformly by mobile and weakly bound water and some structural water similar to that in aqueous solution. These differences in the active site hydration are consistent with the inverse dependence of enzymatic activity on organic solvent polarity and indicate that the behavior of hydration water on the enzyme surface and in the active site is an important determinant of biological function especially in low water media.  相似文献   

5.
Quantum mechanical and molecular dynamics methods were used to analyze the structure and stability of neutral and zwitterionic configurations of the extracted active site sequence from a Burkholderia cepacia lipase, histidyl-seryl-glutamin (His86-Ser87-Gln88) and its mutated form, histidyl-cysteyl-glutamin (His86-Cys87-Gln88) in vacuum and different solvents. The effects of solvent dielectric constant, explicit and implicit water molecules and side chain mutation on the structure and stability of this sequence in both neutral and zwitterionic forms are represented. The quantum mechanics computations represent that the relative stability of zwitterionic and neutral configurations depends on the solvent structure and its dielectric constant. Therefore, in vacuum and the considered non-polar solvents, the neutral form of the interested sequences is more stable than the zwitterionic form, while their zwitterionic form is more stable than the neutral form in the aqueous solution and the investigated polar solvents in most cases. However, on the potential energy surfaces calculated, there is a barrier to proton transfer from the positively charged ammonium group to the negatively charged carboxylat group or from the ammonium group to the adjacent carbonyl oxygen and or from side chain oxygen and sulfur to negatively charged carboxylat group. Molecular dynamics simulations (MD) were also performed by using periodic boundary conditions for the zwitterionic configuration of the hydrated molecules in a box of water molecules. The obtained results demonstrated that the presence of explicit water molecules provides the more compact structures of the studied molecules. These simulations also indicated that side chain mutation and replacement of sulfur with oxygen leads to reduction of molecular flexibility and packing.  相似文献   

6.
The recent crystal structures of CYP101D2, a cytochrome P450 protein from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 revealed that both the native (substrate‐free) and camphor‐soaked forms have open conformations. Furthermore, two other potential camphor‐binding sites were also identified from electron densities in the camphor‐soaked structure, one being located in the access channel and the other in a cavity on the surface near the F‐helix side of the F‐G loop termed the substrate recognition site. These latter sites may be key intermediate positions on the pathway for substrate access to or product egress from the active site. Here, we show via the use of unbiased atomistic molecular dynamics simulations that despite the open conformation of the native and camphor‐bound crystal structures, the underlying dynamics of CYP101D2 appear to be very similar to other CYP proteins. Simulations of the native structure demonstrated that the protein is capable of sampling many different conformational substates. At the same time, simulations with the camphor positioned at various locations within the access channel or recognition site show that movement towards the active site or towards bulk solvent can readily occur on a short timescale, thus confirming many previously reported in silico studies using steered molecular dynamics. The simulations also demonstrate how the fluctuations of an aromatic gate appear to control access to the active site. Finally, comparison of camphor‐bound simulations with the native simulations suggests that the fluctuations can be of similar level and thus are more representative of the conformational selection model rather than induced fit.  相似文献   

7.
A molecular dynamics analysis of protein structural elements   总被引:6,自引:0,他引:6  
C B Post  C M Dobson  M Karplus 《Proteins》1989,5(4):337-354
The relation between protein secondary structure and internal motions was examined by using molecular dynamics to calculate positional fluctuations of individual helix, beta-sheet, and loop structural elements in free and substrate-bound hen egg-white lysozyme. The time development of the fluctuations revealed a general correspondence between structure and dynamics; the fluctuations of the helices and beta-sheets converged within the 101 psec period of the simulation and were lower than average in magnitude, while the fluctuations of the loop regions were not converged and were mostly larger than average in magnitude. Notable exceptions to this pattern occurred in the substrate-bound simulation. A loop region (residues 101-107) of the active site cleft had significantly reduced motion due to interactions with the substrate. Moreover, part of a loop and a 3(10) helix (residues of 67-88) not in contact with the substrate showed a marked increase in fluctuations. That these differences in dynamics of free and substrate-bound lysozyme did not result simply from sampling errors was established by an analysis of the variations in the fluctuations of the two halves of the 101 psec simulation of free lysozyme. Concerted transitions of four to five mainchain phi and psi angles between dihedral wells were shown to be responsible for large coordinate shifts in the loops. These transitions displaced six or fewer residues and took place either abruptly, in 1 psec or less, or with a diffusive character over 5-10 psec. Displacements of rigid secondary structures involved longer timescale motions in bound lysozyme; a 0.5 A rms change in the position of a helix occurred over the 55 psec simulation period. This helix reorientation within the protein appears to be a response to substrate binding. There was little correlation between the solvent accessible surface area and the dynamics of the different structural elements.  相似文献   

8.
The effect of a solvent and a crystalline environment on the dynamics of proteins is investigated by the method of computer simulation. Three 25-ps molecular dynamics simulations at 300 K of the bovine pancreatic trypsin inhibitor (BPTI), consisting of 454 heavy atoms, are compared: one of BPTI in vacuo, one of BPTI in a box with 2647 spherical nonpolar solvent atoms, and one of BPTI surrounded by fixed crystal image atoms. Both average and time-dependent molecular properties are examined to determine the effect of the environment on the behavior of the protein. The dynamics of BPTI in solution or in the crystal environment are found to be very similar to that found in the vacuum calculation. The primary difference in the average properties is that the equilibrium structure in the presence of solvent or the crystal field is significantly closer to the X-ray structure than is the vacuum result; concomitantly, the more realistic environment leads to a number density closer to experiment. The presence of solvent has a negligible effect on the overall magnitude of the positional or dihedral angle fluctuations in the interior of the protein; however, there are changes in the decay times of the fluctuations of interior atoms. For surface residues, both the magnitude and the time course of the motions are significantly altered by the solvent. There tends to be an increase in the displacements of long side chains and the flexible parts of the main chain that protrude into the solvent. Further, these motions tend to have a more diffusive character with longer relaxation times than in vacuo. The crystal environment has a specific effect on a number of side chains which are held in relatively fixed positions through hydrogen-bond and electric interactions with the neighboring protein atoms. Most of the effects of the solution environment seem to be sufficiently nonspecific that it may be possible to model them by applying a mean field and stochastic dynamic methods.  相似文献   

9.
Solvent molecules play an important role for the structural and dynamical properties of proteins. A major focus of current protein engineering is the development of enzymes that are catalytically active in the presence of organic solvents. The monooxygenase P450 BM-3 is one of the best-studied enzymes and promising for industrial applications but with limited activity in the presence of organic solvents or cosolvents. To gain insights into the structural and dynamical properties of the heme domain of this enzyme in solution, molecular dynamics simulations in pure water and in a 14% DMSO/water mixture were performed. The results of the simulations show overall similar structural fluctuations in both solvent systems, with no indication of partial or global unfolding. In 14% DMSO, the regions comprising the helices E, F, and the EF loop (implicated in controlling the entry to the active site channel) undergo a large shift. Significant changes were also observed near the active site access channel at the residue R47. During the simulation, no DMSO molecule penetrated the active site. However, a significant accumulation of DMSO molecules close to the substrate-binding site and to the Flavin Mononucleotide (FMN) reductase domain interface was observed.  相似文献   

10.
Limited proteolysis by trypsin of monomeric Cu,Zn superoxide dismutase from Escherichia coli induces a specific cleavage of the polypeptide chain at the level of Lys60 located in the S-S subloop of loop 6,5 where, when compared to the eukaryotic enzyme, a seven-residues insertion, completely exposed to the solvent, is observed. This result suggests that this subloop is disordered and flexible, thus enabling binding and adaptation to the active site of the proteolytic enzyme. Indeed, molecular dynamics simulation indicates that the S-S subloop undergoes high fluctuations and that its high flexibility coupled to an high solvent accessibility can explain the specific bond selection of the protease. As a matter of fact, of the possible 14 solvent accessible proteolytic sites only the Lys60 flexible site is cleaved. High flexibility and solvent exposure are confirmed by the short water residence time for the residues corresponding to the cleavage site evaluated by molecular dynamics simulation. These experiments demonstrate that molecular dynamics simulation and limited proteolysis are complementary and unambiguous tools to identify flexible sites in proteins.  相似文献   

11.
Molecular dynamics effects on protein electrostatics   总被引:4,自引:0,他引:4  
Electrostatic calculations have been carried out on a number of structural conformers of tuna cytochrome c. Conformers were generated using molecular dynamics simulations with a range of solvent simulating, macroscopic dielectric formalisms, and one solvent model that explicitly included solvent water molecules. Structures generated using the lowest dielectric models were relatively tight, with side chains collapsed on the surface, while those from the higher dielectric models had more internal and external fluidity, with surface side chains exploring a fuller range of conformational space. The average structure generated with the explicitly solvated model corresponded most closely with the crystal structure. Individual pK values, overall titration curves, and electrostatic potential surfaces were calculated for average structures and structures along each simulation. Differences between structural conformers within each simulation give rise to substantial changes in calculated local electrostatic interactions, resulting in pK value fluctuations for individual sites in the protein that vary by 0.3-2.0 pK units from the calculated time average. These variations are due to the thermal side chain reorientations that produce fluctuations in charge site separations. Properties like overall titration curves and pH dependent stability are not as sensitive to side chain fluctuations within a simulation, but there are substantial effects between simulations due to marked differences in average side chain behavior. These findings underscore the importance of proper dielectric formalism in molecular dynamics simulations when used to generate alternate solution structures from a crystal structure, and suggest that conformers significantly removed from the average structure have altered electrostatic properties that may prove important in episodic protein properties such as catalysis.  相似文献   

12.
13.
Liqiang Dai  Bo Zhang  Shuxun Cui  Jin Yu 《Proteins》2019,87(7):531-540
Green fluorescent protein (GFP) is a widely used biomarker that demands systematical rational approaches to its structure function redesign. In this work, we mainly utilized atomistic molecular dynamics simulations to inspect and visualize internal fluctuation and coordination around chromophore inside GFP, from water to nonpolar octane solvent. We found that GFP not only maintains its β-barrel structure well into the octane, but also sustains internal residue and water coordination to position the chromophore stably while suppress dihedral fluctuations of the chromophore, so that functional robustness of GFP is achieved. Our accompanied fluorescence microscope measurements accordingly confirmed the GFP functioning into the octane. Furthermore, we identified that crucial water sites inside GFP along with permeable pores on the β-barrel of the protein are largely preserved from the water to the octane solvent, which allows sufficiently fast exchanges of internal water with the bulk or with the water layer kept on the surface of the protein. By additionally pulling GFP from bulk water to octane, we suggest that the GFP function can be well maintained into the nonpolar solvent as long as, first, the protein does not denature in the nonpolar solvent nor across the polar-nonpolar solvent interface; second, a minimal set of water molecules are in accompany with the protein; third, the nonpolar solvent molecules may need to be large enough to be nonpermeable via the water pores on the β-barrel.  相似文献   

14.
The influence of solvent viscosity on protein dynamics was investigated with molecular dynamics simulations of factor Xa in two solvents differing only in viscosity, by a factor of 10. We obtained this viscosity change by changing the masses of the solvent atoms by a factor of 100. Equilibrium properties of the protein, that is, the average structure, its fluctuations, and the secondary structure, show no significant dependence on the solvent viscosity. The dynamic properties of the protein, that is, the atom-positional correlation times and torsional angle transitions, however, depend on the solvent viscosity. The protein appears to be much more mobile in the solvent of lower viscosity. It feels the influence of the solvent not only on the surface but even in its core. With increasing solvent viscosity, the positional relaxation times of atoms in the protein core increase as much as those of atoms on the protein surface, and the relative increase in the core is even larger than on the surface.  相似文献   

15.
Acyl Group Migrations in 2-Monoolein   总被引:6,自引:0,他引:6  
Acyl migration in 2-monoolein dissolved in solvents under conditions common in lipid modification reactions has been studied. The effects on acyl migration of solvent, incubation temperature, water activity, polar additives and solid additives have been investigated. Extensive acyl migration occured in aliphatic hydrocarbons and water-miscible alcohols under dry conditions. The acyl migration rate could be decreased in several nonpolar solvents by adding a small amount of water or an alcohol. Increasing water activity had no effect in isooctane, but decreased the acyl migration rate dramatically in methyl tert-butyl ether and methyl isobutyl ketone. Several commonly used enzyme supports catalysed acyl migration, showing that supports with surface charges could catalyse acyl migration.  相似文献   

16.
Molecular dynamics simulations were employed to study how protein solution structure and dynamics are affected by adaptation to high temperature. Simulations were carried out on a para-nitrobenzyl esterase (484 residues) and two thermostable variants that were generated by laboratory evolution. Although these variants display much higher melting temperatures than wild-type (up to 18 degrees C higher) they are both >97% identical in sequence to the wild-type. In simulations at 300 K the thermostable variants remain closer to their crystal structures than wild-type. However, they also display increased fluctuations about their time-averaged structures. Additionally, both variants show a small but significant increase in radius of gyration relative to wild-type. The vibrational density of states was calculated for each of the esterases. While the density of states profiles are similar overall, both thermostable mutants show increased populations of the very lowest frequency modes (<10 cm(-1)), with the more stable mutant showing the larger increase. This indicates that the thermally stable variants experience increased concerted motions relative to wild-type. Taken together, these data suggest that adaptation for high temperature stability has resulted in a restriction of large deviations from the native state and a corresponding increase in smaller scale fluctuations about the native state. These fluctuations contribute to entropy and hence to the stability of the native state. The largest changes in localized dynamics occur in surface loops, while other regions, particularly the active site residues, remain essentially unchanged. Several mutations, most notably L313F and H322Y in variant 8G8, are in the region showing the largest increase in fluctuations, suggesting that these mutations confer more flexibility to the loops. As a validation of our simulations, the fluctuations of Trp102 were examined in detail, and compared with Trp102 phosphorescence lifetimes that were previously measured. Consistent with expectations from the theory of phosphorescence, an inverse correlation between out-of-plane fluctuations on the picosecond time scale and phosphorescence lifetime was observed.  相似文献   

17.
The impact of an extensive, uniform and hydrophobic protein surface on the behavior of the surrounding solvent is investigated. In particular, focus is placed on the possible enhancement of the structure of water at the interface, one model for the hydrophobic effect. Solvent residence times and radial distribution functions are analyzed around three types of atomic sites (methyl, polar, and positively charged sites) in 1 ns molecular dynamics simulations of the α-helical polypeptide SP-C in water, in methanol and in chloroform. For comparison, water residence times at positively and negatively charged sites are obtained from a simulation of a highly charged α-helical polypeptide from the protein titin in water. In the simulations the structure of water is not enhanced at the hydrophobic protein surface, but instead is disrupted and devoid of positional correlation beyond the first solvation sphere. Comparing solvents of different polarity, no clear trend toward the most polar solvent being more ordered is found. In addition, comparison of the water residence times at nonpolar, polar, positively charged, or negatively charged sites on the surface of SP-C or titin does not reveal pronounced or definite differences. It is shown, however, that the local environment may considerably affect solvent residence times. The implications of this work for the interpretation of the hydrophobic effect are discussed. Proteins 27:395–404, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Molecular dynamics simulations were performed on ribonuclease T1 (RNase T1; EC 3.1.27.3) to determine a structure for the free enzyme. Simulations starting with the X-ray coordinates for the 2'GMP-RNase T1 complex were done in vacuo and with an 18-A water ball around the active site using stochastic boundary conditions to understand the influence of water on both the structure and fluctuations of the enzyme. Removal of 2'GMP caused structural changes in the loop regions, including those directly interacting with the bound inhibitor in the crystal structure, while regions of secondary structure were less affected. The presence of solvent in the simulation damped the structural changes observed, which may be related to the use of full charges in both simulations. Fluctuations were also affected by the water, which generally increased both at the surface and in the interior of the protein. The active site in vacuo collapsed upon itself, forming a number of protein-protein hydrogen bonds leading to larger structural changes and lowered fluctuations while the presence of water kept the active site open, minimized structural changes, and increased fluctuations. Such fluctuations in the active site may be important for the binding of inhibitors or substrates to the enzyme. Lastly, results from the water simulation allow the prediction of a motion for a hypothetical tryptophan at position 45, which can ultimately be tested experimentally via time-resolved fluorescence using a site-specific mutant of the enzyme.  相似文献   

19.
We have performed an 4-ns MD simulation of calmodulin complexed with a target peptide in explicit water, under realistic conditions of constant temperature and pressure, in the presence of a physiological concentration of counterions and using Ewald summation to avoid truncation of long-range electrostatic forces. During the simulation the system tended to perform small fluctuations around a structure similar to, but somewhat looser than the starting crystal structure. The calmodulin-peptide complex was quite rigid and did not exhibit any large amplitude domain motions such as previously seen in apo- and calcium-bound calmodulin. We analyzed the calmodulin-peptide interactions by calculating buried surface areas, CHARMM interaction energies and continuum model interaction free energies. In the trajectory, the protein surface area buried by contact with the peptide is 1373 A(2) approximately evenly divided between the calmodulin N-terminal, C-terminal and central linker regions. A majority of this buried surface, 803 A(2), comes from nonpolar residues, in contrast to the protein as a whole, for which the surface is made up of mostly polar and charged groups. Our continuum calculations indicate that the largest favorable contribution to peptide binding comes from burial of molecular surface upon complex formation. Electrostatic contributions are favorable but smaller in the trajectory structures, and actually unfavorable for binding in the crystal structure. Since nonpolar groups make up most of buried surface of the protein, our calculations suggest that the hydrophobic effect is the main driving force for binding the helical peptide to calmodulin, consistent with thermodynamic analysis of experimental data. Besides the burial of nonpolar surface area, secondary contributions to peptide binding come from burial of polar surface and electrostatic interactions. In the nonpolar interactions a crucial role is played by the nine methionines of calmodulin. In the electrostatic interactions the negatively charged protein residues and positively charged peptide residues play a dominant role.  相似文献   

20.
Effects of sodium (octyl, dodecyl, hexadecyl) sulfate and their cationic analogous on the structure of adenosine deaminase (ADA) were investigated by fluorescence and circular dichroism spectroscopy as well as molecular dynamics simulation and docking calculation. Root-mean-square derivations, radius of gyration, solvent accessible surface area, and radial distribution function were obtained. The results showed that anionic and cationic surfactants reduce protein stability. Cationic surfactants have more effect on the ADA structure in comparison with anionic surfactants. More concentration and longer surfactants are parallel to higher denaturation. Furthermore, aggregation in the presence of anionic surfactants is more than cationic surfactants. Docking data showed that longer surfactants have more interaction energy and smaller ones bound to the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号