首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bone-marrow-derived mesenchymal stem cells (MSCs) can differentiate into a variety of cell types including smooth muscle cells (SMCs). We have attempted to demonstrate that, following treatment with transforming growth factor-beta 1 (TGF-beta1) and ascorbic acid (AA), human bone-marrow-derived MSCs differentiate into the SMC lineage for use in tissue engineering. Quantitative polymerase chain reaction for SMC-specific gene (alpha smooth muscle actin, h1-calponin, and SM22alpha) expression was performed on MSCs, which were cultured with various concentrations of TGF-beta1 or AA. TGF-beta1 had a tendency to up-regulate the expression of SMC-specific genes in a dose-dependent manner. The expression of SM22alpha was significantly up-regulated by 30 muM AA. We also investigated the additive effect of TGF-beta1 and AA for differentiation into SMCs and compared this effect with that of other factors including platelet-derived growth factor BB (PDGF-BB). In addition to SMC-specific gene expression, SMC-specific proteins increased by two to four times when TGF-beta1 and AA were used together compared with their administration alone. PDGF did not increase the expression of SMC-specific markers. MSCs cultured with TGF-beta1 and AA did not differentiate into osteoblasts and adipocytes. These results suggest that a combination of TGF-beta1 and AA is useful for the differentiation of MSCs into SMCs for use in tissue engineering.  相似文献   

2.
3.
4.
5.
Our previous study showed that the pertussis toxin-sensitive G protein, Gi2, is selectively localized in the ventricular zone of embryonic brains, where the neuroepithelial cells undergo active proliferation. In order to clarify the role of Gi2 in this site, we first administered pertussis toxin by an exo-utero manipulation method into the lateral ventricle of mouse brain at embryonic day 14.5. Examination at embryonic day 18.5 revealed that pertussis toxin-injected embryos had brains with thinner cerebral cortices, made up of fewer constituent cells. Bromodeoxyuridine labeling revealed fewer numbers of bromodeoxyuridine-positive cells in the cerebral cortices of pertussis toxin-injected embryos, suggesting impaired proliferation of neuroepithelial cells. Next we cultured neural progenitor cells from rat embryonic brains and evaluated the mitogenic effects of agonists for several Gi-coupled receptors that are known to be expressed in the ventricular zone. Among agonists tested, endothelin most effectively stimulated the incorporation of [3H]thymidine in the presence of fibronectin, via the endothelin-B receptor. This was associated with phosphorylation of extracellular signal-regulated kinase, and pertussis toxin partially inhibited both endothelin-stimulated DNA synthesis and phosphorylation of extracellular signal-regulated kinase. Injection of endothelin-3 into the ventricle of embryonic brains increased numbers of bromodeoxyuridine-positive cells in the cerebral cortex, whereas injection of an endothelin-B receptor antagonist decreased them. These findings indicate that Gi2 mediates signaling from receptors such as the endothelin-B receptor to maintain mitogenic activity in the neural progenitor cells of developing brain.  相似文献   

6.
Type I cGMP-dependent protein kinase (PKG I) plays a major role in vascular homeostasis by mediating smooth muscle relaxation in response to nitric oxide, but little is known about the regulation of PKG I expression in smooth muscle cells. We found opposing effects of RhoA and Rac1 on cellular PKG I expression: (i) cell density-dependent changes in PKG I expression varied directly with Rac1 activity and inversely with RhoA activity; (ii) RhoA activation by calpeptin suppressed PKG I, whereas RhoA down-regulation by small interfering RNA increased PKG I expression; and (iii) PKG I promoter activity was suppressed in cells expressing active RhoA or Rho-kinase but was enhanced in cells expressing active Rac1 or a dominant negative RhoA. Sp1 consensus sequences in the PKG I promoter were required for Rho regulation and bound nuclear proteins in a cell density-dependent manner, including the Krüppel-like factor 4 (KLF4). KLF4 was identified as a major trans-acting factor at two proximal Sp1 sites; active RhoA suppressed KLF4 DNA binding and trans-activation potential on the PKG I promoter. Experiments with actin-binding agents suggested that RhoA could regulate KLF4 via its ability to induce actin polymerization. Regulation of PKG I expression by RhoA may explain decreased PKG I levels in vascular smooth muscle cells found in some models of hypertension and vascular injury.  相似文献   

7.
We recently reported that transforming growth factor (TGF)-beta induced the neural crest stem cell line Monc-1 to differentiate into a spindle-like contractile smooth muscle cell (SMC) phenotype and that Smad signaling played an important role in this phenomenon. In addition to Smad signaling, other pathways such as mitogen-activated protein kinase (MAPK), phosphoinositol-3 kinase, and RhoA have also been shown to mediate TGF-beta actions. The objectives of this study were to examine whether these signaling pathways contribute to TGF-beta-induced SMC development and to test whether Smad signaling cross-talks with other pathway(s) during SMC differentiation induced by TGF-beta. We demonstrate here that RhoA signaling is critical to TGF-beta-induced SMC differentiation. RhoA kinase (ROCK) inhibitor Y27632 significantly blocks the expression of multiple SMC markers such as smooth muscle alpha-actin, SM22alpha, and calponin in TGF-beta-treated Monc-1 cells. In addition, Y27632 reversed the cell morphology and abolished the contractility of TGF-beta-treated cells. RhoA signaling was activated as early as 5 min following TGF-beta addition. Dominant negative RhoA blocked nuclear translocation of Smad2 and Smad3 because of the inhibition of phosphorylation of both Smads and inhibited Smad-dependent SBE promoter activity, whereas constitutively active RhoA significantly enhanced SBE promoter activity. Consistent with these results, C3 exotoxin, an inhibitor of RhoA activation, significantly attenuated SBE promoter activity and inhibited Smad nuclear translocation. Taken together, these data point to a new role for RhoA as a modulator of Smad activation while regulating TGF-beta-induced SMC differentiation.  相似文献   

8.
9.
10.
11.
This study identifies signaling pathways that play key roles in the formation and maintenance of epicardial cells, a source of progenitors for coronary smooth muscle cells (SMCs). After epithelial to mesenchymal transition (EMT), mesenchymal cells invade the myocardium to form coronary SMCs. RhoA/Rho kinase activity is required for EMT and for differentiation into coronary SMCs, whereas cAMP activity is known to inhibit EMT in epithelial cells by an unknown mechanism. We use outgrowth of epicardial cells from E9.5 isolated mouse proepicardium (PE) explants, wild type and Epac1 null E12.5 mouse heart explants, adult rat epicardial cells, and immortalized mouse embryonic epicardial cells as model systems to identify signaling pathways that regulate RhoA activity to maintain the epicardial progenitor state. We demonstrate that RhoA activity is suppressed in the epicardial progenitor state, that the cAMP-dependent Rap1 GTP exchange factor (GEF), Epac, known to down-regulate RhoA activity through activation of Rap1 GTPase activity increased, that Rap1 activity increased, and that expression of the RhoA antagonistic Rnd proteins known to activate p190RhoGAP increased and associated with p190RhoGAP. Finally, EMT is associated with increased p63RhoGEF and RhoGEF-H1 protein expression, increased GEF-H1 activity, with a trend in increased p63RhoGEF activity. EMT is suppressed by partial silencing of p63RhoGEF and GEF-H1. In conclusion, we have identified new signaling molecules that act together to control RhoA activity and play critical roles in the maintenance of coronary smooth muscle progenitor cells in the embryonic epicardium. We suggest that their eventual manipulation could promote revascularization after myocardial injury.  相似文献   

12.
We have developed an inducible cell line that transiently expresses Gq alpha G protein subunits in response to doxycycline. HEK293/Tet-On pBI(Gq alpha) cells worked consistently, achieving high and tightly regulated levels of Gq alpha overexpression (38-fold increase compared with non-induced cells). We investigated the possibility of using an inducible system to increase the proportion of constitutively active endogenously expressed G protein-coupled receptors (GPCRs) by overexpressing Gq alpha. Not only did we observe an increase in basal activity following doxycycline treatment, but also increased intrinsic activity of agonists such as carbachol, endothelin, lysophosphatidic acid (LPA), and bradykinin. Furthermore, carbachol and LPA potency increased following Gq alpha overexpression, as did the intrinsic activity of the partial agonist pilocarpine, observations indicative of constitutive activity. An inducible cell line, transiently expressing G proteins, can therefore be employed to induce constitutive activity of endogenously expressed GPCRs. This model system could be used to identify clinically important inverse agonists.  相似文献   

13.
14.
15.
The importance of transforming growth factor-beta1 (TGF-beta1) in plasminogen activator inhibitor-1 (PAI-1) gene expression has been established, but the precise intracellular mechanisms are not fully understood. Our hypothesis is that the actin cytoskeleton is involved in TGF-beta1/MAPK-mediated PAI-1 expression in human mesangial cells. Examination of the distributions of actin filaments (F-actin), alpha-actinin, extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) by immunofluorescence and immunoprecipitation revealed that ERK and JNK associate with alpha-actinin along F-actin and that TGF-beta1 stimulation promote the dissociation of ERK and JNK with F-actin. Disassembly of the actin cytoskeleton inhibited phosphorylation of ERK and JNK and modulated PAI-1 expression and promoter activity under both basal and TGF-beta1-stimulated conditions. Stabilizing actin prevented dephosphorylation of ERK and JNK. ERK and JNK inhibitors and overexpressed dominant negative mutants antagonized the ability of TGF-beta1 to increase PAI-1 expression and promoter activity. Disassembly of F-actin also inhibited AP-1 DNA binding activity as determined by electrophoretic mobility shift assay using AP-1 consensus oligonucleotides derived from human PAI-1 promoter. F-actin stabilization prevented loss of AP-1 DNA binding activity. Therefore, changes in actin cytoskeleton modulate the ability of TGF-beta1 to stimulate PAI-1 expression through a mechanism dependent on the activation of MAPK/AP-1 pathways.  相似文献   

16.
17.
Transforming growth factor-beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. We studied TGF-beta-induced rearrangements of the actin filament system and found that TGF-beta 1 treatment of PC-3U human prostate carcinoma cells resulted in a rapid formation of lamellipodia. Interestingly, this response was shown to be independent of the Smad signaling pathway; instead, it required the activity of the Rho GTPases Cdc42 and RhoA, because ectopic expression of dominant negative mutant Cdc42 and RhoA abrogated the response. Long-term stimulation with TGF-beta 1 resulted in an assembly of stress fibers; this response required both signaling via Cdc42 and RhoA, and Smad proteins. A known downstream effector of Cdc42 is p38(MAPK); treatment of the cells with the p38(MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(pyridyl)1H-imidazole (SB203580), as well as ectopic expression of a kinase-inactive p38(MAPK), abrogated the TGF-beta-induced actin reorganization. Moreover, treatment of cells with the inhibitors of the RhoA target-protein Rho-associated coiled-coil kinase (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide (Y-27632) and 1-5(-isoquinolinesulfonyl)homopiperazine (HA-1077), as well as ectopic expression of kinase-inactive Rho coiled-coil kinase-1, abrogated the TGF-beta 1-induced formation of stress fibers. Collectively, these data indicate that TGF-beta-induced membrane ruffles occur via Rho GTPase-dependent pathways, whereas long-term effects require cooperation between Smad and Rho GTPase signaling pathways.  相似文献   

18.
Expression of connective tissue growth factor (CTGF) was induced in renal mesangial cells by activation of heptahelical receptors by serotonin (5-HT) and lysophosphatidic acid (LPA). Induction of CTGF mRNA was transient with maximal expression after 1 to 2 h, whereas induction of CTGF by transforming growth factor beta (TGF-beta) increased over time. In contrast to the induction of other early response genes (Egr-1 and cyclooxygenase-2), LPA-mediated induction of CTGF was pertussis toxin-insensitive and independent of p42/44 MAP kinase activation. 5-HT-mediated CTGF induction was due to activation of 5-HT(2A) receptors and likewise independent of p42/44 MAP kinase activation. Upon stimulation, enhanced levels of CTGF protein were detected in cellular homogenates, whereas no protein was detectable in cell culture supernatants. Inhibition of proteins of the Rho family by toxin B abrogated basal as well as CTGF expression stimulated by LPA, 5-HT, and TGF-beta. Inhibition of the downstream mediator of RhoA, the Rho kinase by Y-27632 partially reduced induction of CTGF by LPA and TGF-beta. Toxin B not only affected gene expression, but disrupted the actin cytoskeleton similarly as observed after treatment with cytochalasin D. Disassembly of actin stress fibers by cytochalasin D partially reduced basal and stimulated CTGF expression. These data indicate that an intact actin cytoskeleton is critical for the expression of CTGF. Elimination of the input of Rho proteins by toxin B, however, was significantly more effective and their effect on CTGF expression thus goes beyond disruption of the cytoskeleton. These findings thus establish activation of heptahelical receptors coupled to pertussis toxin-insensitive G proteins as a novel signaling pathway to induce CTGF. Proteins of the Rho family and an intact cytoskeleton were identified as critical determinants of CTGF expression induced by LPA and 5-HT, and also by TGF-beta.  相似文献   

19.
We have investigated the role of Rho GTPase in cell growth by generating stable cells that express the wild-type RhoA (RhoA(wt)) under the control of an inducible promoter. Induction of RhoA(wt) had a biphasic effect on the actin cytoskeleton. At low levels of expression, RhoA(wt) stimulated the assembly of actin stress fibers without affecting cell growth. At high levels, there was a paradoxical disruption of the actin cytoskeleton accompanied by a growth arrest. Cell cycle analysis revealed a dual block at the G(1)/S and G(2)/M checkpoints. The G(1)/S arrest correlated with the accumulation of p21(Cip1), resulting in the inhibition of cdk2 activity, whereas the G(2)/M block correlated with the loss of microtubules. The cyclin B level and the cdc2 kinase activity, however, were increased, suggesting that the progression through mitosis rather than entry into the G(2)/M is defective when RhoA(wt) is overexpressed. Similar cell cycle defects and the loss of microtubules were observed after a cytochalasin D treatment, indicating that the ability of RhoA to regulate the integrity of actin cytoskeleton may be critical for the cell cycle transition through both the G(1)/S and M phase checkpoints.  相似文献   

20.
Regulation of vascular smooth muscle cell contractile state is critical for the maintenance of blood vessel tone. Abnormal vascular smooth muscle cell contractility plays an important role in the pathogenesis of hypertension, blood vessel spasm, and atherosclerosis. Myosin phosphatase, the key enzyme controlling myosin light chain dephosphorylation, regulates smooth muscle cell contraction. Vasoconstrictor and vasodilator pathways inhibit and activate myosin phosphatase, respectively. G-protein-coupled receptor agonists can inhibit myosin phosphatase and cause smooth muscle cell contraction by activating RhoA/Rho kinase, whereas NO/cGMP can activate myosin phosphatase and cause smooth muscle cell relaxation by activation of cGMP-dependent protein kinase. We have used yeast two-hybrid screening to identify a 116-kDa human protein that interacts with both myosin phosphatase and RhoA. This myosin phosphatase-RhoA interacting protein, or M-RIP, is highly homologous to murine p116RIP3, is expressed in vascular smooth muscle, and is localized to actin myofilaments. M-RIP binds directly to the myosin binding subunit of myosin phosphatase in vivo in vascular smooth muscle cells by an interaction between coiled-coil and leucine zipper domains in the two proteins. An adjacent domain of M-RIP directly binds RhoA in a nucleotide-independent manner. M-RIP copurifies with RhoA and Rho kinase, colocalizes on actin stress fibers with RhoA and MBS, and is associated with Rho kinase activity in vascular smooth muscle cells. M-RIP can assemble a complex containing both RhoA and MBS, suggesting that M-RIP may play a role in myosin phosphatase regulation by RhoA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号