首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Delta endotoxin is a potent inhibitor of the (Na,K)-ATPase   总被引:1,自引:0,他引:1  
A 68-kDa protein, delta endotoxin, produced by Bacillus thuringiensis ssp. Kurstaki inhibits ion transport, (Na,K)-ATPase, and K+-p-nitrophenylphosphatase activity catalyzed by the Na+ pump. The Ki for inhibition of the K+-p-nitrophenylphosphatase activity of purified dog kidney (Na,K)-ATPase was approximately 0.37 microM. Delta endotoxin had a similar Ki for inhibition of (Na,K)-ATPase activity when assayed at low Na+ concentration (10 mM) but the inhibition was reversed when high concentrations of Na+ (100 mM NaCl) were added to the assay. Phosphorylation of the active site aspartyl residue with 32PO3-4 was also blocked by delta endotoxin. Ouabain-sensitive 86Rb+ uptake into intact human red blood cells was not inhibited by externally added toxin; however, strophanthidin-inhibitable 22Na+ uptake into inside-out vesicles from red blood cells was completely blocked by delta endotoxin (Ki = 0.73 microM). These data suggest that delta endotoxin must enter the cell before it can inhibit the Na+ pump.  相似文献   

2.
J L Gabriel  G W Plaut 《Biochemistry》1984,23(12):2773-2778
The activity of NAD-dependent isocitrate dehydrogenase from bovine heart was inhibited by NADH (apparent Ki about 4.3 microM) and NADPH (Ki about 9.8 microM) at subsaturating substrate concentrations at pH 7.4. The inhibition by NADH or NADPH was reversed competitively by magnesium isocitrate in the presence of ADP, but not without ADP. Reversal of inhibition by NADH or NADPH with respect to NAD+ was competitive or of the linear mixed type depending on whether ADP was absent or present. ADP3- (0.2 mM) increased the Ki(app) for NADPH from 9.8 to 27.1 microM; further addition of Ca2+ (0.2 mM) raised the Ki(app) to 127 microM. For the modification of NADPH inhibition by ADP, S0.5 for Ca2+ was approximately 48 microM. This compares to the Km for Ca2+ of 0.3-1 microM for the activation of the enzyme without NADPH [Denton, R. M., Richards, D. A., & Chin, J. G. (1978) Biochem. J. 176, 899-906; Aogaichi, T., Evans, J., Gabriel, J., & Plaut, G. W. E. (1980) Arch. Biochem. Biophys. 204, 350-360]. ADP did not affect the Ki for NADH. Magnesium citrate, which was about 100-fold more effective as a positive modifier of the enzyme with ADP than without ADP [Gabriel, J. L., & Plaut, G. W. E. (1983) Fed. Proc., Fed. Am. Soc. Exp. Biol. 42, 2082], reversed competitively the inhibition by NADPH in the presence of ADP, but not without ADP. Magnesium citrate did not reverse NADH inhibition.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The mitochondrial phosphoenolpyruvate carboxykinase (GTP:oxaloacetate carboxy-lyase (transphosphorylating), EC 4.1.1.32), purified from chick embryo liver, was synergistically activated by a combination of Mn2+ and Mg2+ in the oxaloacetate ---- H14CO-3 exchange reaction. Increases in the Mg2+ concentration caused decreases in the K0.5 value of Mn2+ in line with the earlier finding that the enzyme was markedly activated by low Mn2+ (microM) plus high Mg2+ (mM). In the presence of 2.5 mM Mg2+, increases in the Mn2+ level first enhanced the activity of phosphoenolpyruvate carboxykinase, and then suppressed it to the maximal velocity shown in the presence of Mn2+ alone. Kinetic studies showed that high Mn2+ inhibited the activity of Mg2+ noncompetitively, and those of GTP and oxaloacetate uncompetitively. The inhibition constant for oxaloacetate (K'i = 550 microM) was lower than that of Mg2+ (Ki = K'i = 860 microM) or GTP (K'i = 1.6 mM), and was nearly equal to the apparent half-maximal inhibition concentration of Mn2+. These results suggested that Mn2+ can play two roles, of activating and suppressing phosphoenolpyruvate carboxykinase activity in the presence of high Mg2+.  相似文献   

4.
The enzymatic properties of purified preparations of chicken liver and chicken skeletal muscle fructose bisphosphatases (D-fructose-1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) were compared. Both enzymes have an absolute requirement for Mg2+ or Mn2+. The apparent Km for MgCl2 at pH 7.5 was 0.5 mM for the muscle enzyme and 5 mM for the liver enzyme. Fructose bisphosphate inhibited both enzymes. At pH 7.5, the inhibitor constants (Ki) were 0.18 and 1.3 mM for muscle and liver fructose bisphosphatases, respectively. The muscle enzyme was considerably more sensitive to AMP inhibition than the liver enzyme. At pH 7.5 and in the presence of 1 mM MgCl2, 50% inhibition of muscle and liver fructose bisphosphatases occurred at AMP concentrations of 7 X 10(-9) and 1 X 10(-6) M, respectively. EDTA activated both enzymes. The degree of activation was time and concentration dependent. The degree of EDTA activation of both enzymes decreased with increasing MgCl2 concentration. Ca2+ was a potent inhibitor of both liver (Ki, 1 X 10(-4) M) and muscle (Ki, 1 X 10(-5) M) fructose bisphosphatase. This inhibition was reversed by the presence of EDTA. Ca2+ appears to be a competitive inhibitor with regard to Mg2+. There is, however, a positive homeotropic interaction among Mg2+ sites of both enzymes in the presence of Ca2+.  相似文献   

5.
Full activation of human liver arginase (EC 3.5.3.1), by incubation with 5 mM Mn2+ for 10 min at 60 degrees C, resulted in increased Vmax and a higher sensitivity of the enzyme to borate inhibition, with no change in the K(m) for arginine. Borate behaved as an S-hyperbolic I-hyperbolic non-competitive inhibitor and had no effect on the interaction of the enzyme with the competitive inhibitors L-ornithine (Ki = 2 +/- 0.5 mM), L-lysine (Ki = 2.5 +/- 0.4 mM), and guanidinium chloride (Ki = 100 +/- 10 mM). The pH dependence of the inhibition was consistent with tetrahedral B(OH)4- being the inhibitor, rather than trigonal B(OH)3. We suggest that arginase activity is associated with a tightly bound Mn2+ whose catalytic action may be stimulated by addition of a more loosely bound Mn2+, to generate a fully activated enzyme form. The Mn2+ dependence and partial character of borate inhibition are explained by assuming that borate binds in close proximity to the loosely bound Mn2+ and interferes with its stimulatory action. Although borate protects against inactivation of the enzyme by diethyl pyrocarbonate (DEPC), the DEPC-sensitive residue is not considered as a ligand for borate binding, since chemically modified species, which retain about 10% of enzymatic activity, were also sensitive to the inhibitor.  相似文献   

6.
Two receptor sites for [3H]piretanide, a sulfamoylbenzoic acid loop diuretic, have been identified in intact Madin-Darby canine kidney cells, an epithelial cell line derived from dog kidney. The two receptor sites differed in their affinity for piretanide (KD1 = 2.1 +/- 1.4 nM and KD2 = 264 +/- 88 nM) and the maximal number of sites (Bmax1 = 11 +/- 4 and Bmax2 = 120 +/- 80 fmol/mg of protein). Madin-Darby canine kidney cells are known to possess a tightly coupled and highly cooperative Na+,K+,Cl- cotransporter which is sensitive to loop diuretics. Under ionic conditions identical to those used to study piretanide binding (30 mM Na+, 30 mM K+, 30 mM Cl-), the Ki for inhibition of the initial rate of 86Rb+ uptake by piretanide was 333 +/- 92 nM, a value not significantly different from the KD of the low affinity receptor site. [3H]Piretanide binding to three low K+-resistant mutants derived from this cell line was also studied. These mutants had been previously characterized as being partially or completely defective in Na+,K+,Cl- cotransport activity (McRoberts, J. A., Tran, C. T., and Saier, M. H., Jr. (1983) J. Biol. Chem. 258, 12320-12326). One of these mutants had undetectable levels of Na+,K+,Cl- cotransport activity and low to undetectable levels of specific piretanide binding. The second mutant had low but measurable levels of cotransport activity (11% of the wild-type levels) and displayed very low affinity (KD approximately 8000 nM) specific piretanide binding. In the third mutant, expression of Na+,K+,Cl- cotransport activity and both piretanide receptors was cell density-dependent. Subconfluent to just-confluent cultures of this mutant lacked detectable cotransport activity as well as specific piretanide binding, whereas very dense cultures displayed both piretanide receptors and had intermediate to nearly normal levels of cotransport activity. These results demonstrate that the Na+,K+,Cl- cotransporter is a receptor for loop diuretics, but they also raise questions about the functional significance of the two piretanide receptor sites.  相似文献   

7.
Heavy metal pollution can arise from many sources and damage many organisms. Exposure to the metal ions can leads to a reduction in cellular antioxidant enzyme activities and lowers cellular defense against oxidative stress. In this study we have tested effects of the some metal ions on the purified bovine kidney cortex glutathione reductase (GR). Cadmium (Cd2+), nickel (Ni2+), and zinc (Zn2+) showed inhibitory effect on the enzyme. The obtained IC?? values of Cd2+, Ni2+, and Zn2+ are 0.027, 0.8, and 1 mM, respectively. Kinetic characterization of the inhibition is also investigated. Cd2+ inhibition is noncompetitive with respect to both oxidized glutathione (GSSG) (Ki(GSSG) 0.060 ± 0.005 mM) and NADPH (Ki(NADPH) 0.025 ± 0.002 mM). Ni2+ inhibition is noncompetitive with respect to GSSG (Ki(GSSG) 0.329 ± 0.016 mM) and uncompetitive with respect to NADPH (Ki(NADPH) 0.712 ± 0.047 mM). The effect of Zn2+ on GR activity is consistent with noncompetitive inhibition pattern when the varied substrate is the GSSG (Ki(GSSG) 0.091 ± 0.005 mM) and the NADPH (Ki(NADPH) 0.226 ± 0.01 mM), respectively. GR inhibition studies may be useful for understanding the mechanisms for oxidative damage associated with heavy metal toxicity.  相似文献   

8.
Key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthetase) were found in the liver and kidney of rats suffering from alloxan diabetes. The activities of these enzymes in the liver were 0.080 and 0.0430 U/mg protein, respectively. Isocitrate lyase activity in the kidney was 0.030 U/mg protein, and that of the malate synthetase was 0.018 U/mg protein. Peroxisomal localization of the enzymes was shown. A novel malate dehydrogenase isoform was found in a liver of rats suffering from the alloxan diabetes. The isocitrate lyase was isolated by selective (NH4)2SO4 precipitation and DEAE-Toyopearl chromatography. The resulting enzyme preparation had specific activity 6.1 U/mg protein, corresponding to 76.25-fold purification with 32.6% yield. The isocitrate lyase was found to follow the Michaelis--Menten kinetic scheme (Km for isocitrate, 0.08 mM) and to be competitively inhibited by glucose 1-phosphate (Ki = 1. 25 mM), succinate (Ki = 1.75 mM), and citrate (Ki = 1.0 mM); the pH optimum of the enzyme was 7.5 in Tris-HCl buffer.  相似文献   

9.
Soluble glutamine synthetase activity (L-glutamate:ammonia ligase, ADP forming, EC 6.3.1.2) was purified to electrophoretic homogeneity from the filamentous non-N2-fixing cyanobacterium Phormidium laminosum (OH-1-p.Cl1) by using conventional purification procedures in the absence of stabilizing ligands. The pure enzyme showed a specific activity of 152 mumol of gamma-glutamylhydroxamate formed.min-1 (transferase activity), which corresponded to 4.4 mumol of Pi released.min-1 (biosynthetic activity). The relative molecular mass of the native enzyme was 602 kilodaltons and was composed of 12 identically sized subunits of 52 kilodaltons. Biosynthetic activity required the presence of Mg2+ as an essential activator, although Co2+ and Zn2+ were partially effective. The kinetics of activation by Mg2+, Co2+, and Zn2+ were sigmoidal, and concentrations required for half-maximal activity were 18 mM (h = 2.2), 6.3 mM (h = 5.6), and 6.3 mM (h = 2.45), respectively. However, transferase activity required Mn2+ (Ka = 3.5 microM), Cu2+, Co2+, or Mg2+ being less effective. The substrate affinities calculated for L-Glu, ammonium, ATP, L-Gln, and hydroxylamine were 15, 0.4, 1.9 (h = 0.75), 14, and 4.1 mM, respectively. Optimal pH and temperature were 7.2 and 55 degrees C for biosynthetic activity and 7.5 and 45 degrees C for transferase activity. The biosynthetic reaction mechanism proceeded according to an ordered three-reactant system, the binding order being ammonium, L-Glu, and ATP. The presence of Mn2+ or Mg2+ drastically affected the thermostability of transferase and biosynthetic activities. Heat inactivation of biosynthetic activity in the presence of Mn2+ obeyed first-order kinetics, with an Ea of 76.8 kcal (ca. 321 kJ) mol-1. Gly, L-Asp, L-Ala, L-Ser and, with lower efficiency, L-Lys and L-Met, L-Lys, and L-Glu inhibited only transferase activity. No cumulative inhibition was observed when mixtures of amino acids were used. Biosynthetic activity was inhibited by AMP (Ki= 7 mM), ADP (Ki= 2.3 mM), p-hydroxymercuribenzoate (Ki= 25 microM), and L-methionine-D, L-sulfoximine (Ki= 2 microM). The enzyme was not activated in vitro by chemically reduced Anabaena thioredoxin. This is the first report of glutamine synthetase activity purified from a filamentous non-N2-fixing cyanobacterium.  相似文献   

10.
The patch-clamp technique was used to investigate the effect of intracellular Mg2+ (Mgi2+) on the conductance of the large-conductance, Ca(2+)-activated K+ channel in cultured rat skeletal muscle. Measurements of single-channel current amplitudes indicated that Mgi2+ decreased the K+ currents in a concentration-dependent manner. Increasing Mgi2+ from 0 to 5, 10, 20, and 50 mM decreased channel currents by 34%, 44%, 56%, and 73%, respectively, at +50 mV. The magnitude of the Mgi2+ block increased with depolarization. For membrane potentials of -50, +50, and +90 mV, 20 mM Mgi2+ reduced the currents 22%, 56%, and 70%, respectively. Mgi2+ did not change the reversal potential, indicating that Mg2+ does not permeate the channel. The magnitude of the Mgi2+ block decreased as the concentration of K+ was increased. At a membrane potential of +50 mv, 20 mM Mgi2+ reduced the currents 71%, 56%, and 25% for Ki+ of 75, 150, and 500 mM. These effects of Mgi2+, voltage, and K+ were totally reversible. Although the Woodhull blocking model could approximate the voltage and concentration effects of the Mgi2+ block (Kd approximately 30 mM with 150 mM symmetrical K+; electrical distance approximately 0.22 from the inner surface), the Woodhull model could not account for the effects of K+. Double reciprocal plots of 1/single channel current vs. 1/[K+] in the presence and absence of Mgi2+, indicated that the Mgi2+ block is consistent with apparent competitive inhibition between Mgi2+ and Ki+. Cai2+, Nii2+, and Sri2+ were found to have concentration- and voltage-dependent blocking effects similar, but not identical, to those of Mgi2+. These observations suggest the blocking by Mgi2+ of the large-conductance, Ca(2+)-activated K+ channel is mainly nonspecific, competitive with K+, and at least partially electrostatic in nature.  相似文献   

11.
We recently identified an enzyme which we have designated inositol polyphosphate 1-phosphatase that hydrolyzes both inositol 1,3,4-trisphosphate (Ins-1,3,4-P3) and inositol 1,4-bisphosphate (Ins-1,4-P2), yielding inositol 3,4-bisphosphate and inositol 4-phosphate, respectively, as products (Inhorn, R. C., Bansal, V.S., and Majerus, P.W. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 2170-2174). We have now purified the inositol polyphosphate 1-phosphatase 3600-fold from calf brain supernatant. The purified enzyme has an apparent molecular mass of 44,000 daltons as determined by gel filtration and is free of other inositol phosphate phosphatase activities. The enzyme hydrolyzes Ins-1,4-P2 with an apparent Km of approximately 4-5 microM, while it degrades Ins-1,3,4-P3 with an apparent Km of approximately 20 microM. The enzyme hydrolyzes these substrates at approximately the same maximal velocity. Inositol polyphosphate 1-phosphatase shows a sigmoidal dependence upon magnesium ion, with 0.3 mM Mg2+ causing half-maximal stimulation. A Hill plot of the data is linear with a value of n = 1.9, suggesting that the enzyme binds magnesium cooperatively. Calcium and manganese inhibit enzyme activity, with 50% inhibition at approximately 6 microM. Lithium inhibits Ins-1,4-P2 hydrolysis uncompetitively with a Ki of approximately 6 mM. This mechanism of lithium inhibition is similar to that observed for the inositol monophosphate phosphatase (originally designated myo-inositol-1-phosphatase; Hallcher, L.M., and Sherman, W.R. (1980) J. Biol. Chem. 255, 10896-10901), suggesting that these two enzymes are related. Lithium also inhibits Ins-1,3,4-P3 hydrolysis with an estimated Ki of 0.5-1 mM.  相似文献   

12.
Inhibition of sarcoplasmic reticulum Ca2+-ATPase by Mg2+ at high pH   总被引:1,自引:0,他引:1  
Steady state turnover of Ca2+-ATPase of sarcoplasmic reticulum has generally been reported to have a bell-shaped pH profile, with an optimum near pH 7.0. While a free [Mg2+] of 2 mM is optimal for activity at pH 7.0, it was found that this level was markedly inhibitory (K1/2 = 2 mM) at pH 8.0, thus accounting for the generally observed low activity at high pH. High activity was restored at pH 8.0 using an optimum free [Mg2+] of 0.2 mM. The mechanism of the Mg2+-dependent inhibition at pH 8.0 was probed. Inhibition was not due to Mg2+ competition with Ca2+ for cytoplasmic transport sites nor to inhibition of formation of steady state phosphoenzyme from ATP. Mg2+ inhibited (K1/2 = 1.8 mM) decay of steady state phosphoenzyme; thus, the locus of inhibition was one of the phosphoenzyme interconversion steps. Transient kinetic experiments showed that Mg2+ competitively inhibited (Ki = 0.7 mM) binding of Ca2+ to lumenal transport sites, blocking the ability of Ca2+ to reverse the catalytic cycle to form ADP-sensitive, from ADP-insensitive, phosphoenzyme. The data were consistent with a hypothesis in which Mg2+ binds lumenal Ca2+ transport sites with progressively higher affinity at higher pH to form a dead-end complex; its dissociation would then be rate-limiting during steady state turnover.  相似文献   

13.
The activity of two purified homogeneous phosphoprotein phosphatases types P I and P II) (phosphoprotein phosphohydrolase, EC 3.1.3.16) from rabbit liver (Khandelwal, R.L., Vandenheede, J.R., and Krebs, E.G. (1976) J. Biol. Chem. 251, 4850-4858) were examined in the presence of divalent cations, Pi, PPi, nucleotides, glycolytic intermediates and a number of other compounds using phosphorylase a, glycogen synthase D and phosphorylated histone as substrates. Enzyme activities were usually inhibited by divalent cations with all substrates; the inhibition being more pronounced with phosphorylase a. Zn2+ was the most potent inhibitor among the divalent cations tested. The enzyme was competitively inhibited by PPi (Ki = 0.1 mM for P I and 0.3 mM for PII), Pi (Ki = 15 mM for P I and 19.8 mM for P II) and p-nitrophenyl phosphate (Ki = 1 mM and 1.4 mM for P I and P II, respectively) employing phosphorylase a as the substrate. The compounds along with a number of others (Na2SO4, citrate, NaF and EDTA) also inhibited the enzyme activity with the other two substrates. Severe inhibition of the enzyme was also observed in the presence of the adenine and uridine nucleotides; monophosphate nucleotides being more inhibitory with phosphorylase a, whereas the di- and triphosphate nucleotides showed more inhibition with glycogen synthase D and phosphorylated histone. Cyclic AMP had no significant effect on enzyme activity with all the substrates tested. Phosphorylated metabolites did not show any marked effect on the enzyme activity with phosphorylase a as the substrate.  相似文献   

14.
Na+-ATPase activity of a dog kidney (Na+ + K+)-ATPase enzyme preparation was inhibited by a high concentration of NaCl (100 mM) in the presence of 30 microM ATP and 50 microM MgCl2, but stimulated by 100 mM NaCl in the presence of 30 microM ATP and 3 mM MgCl2. The K0.5 for the effect of MgCl2 was near 0.5 mM. Treatment of the enzyme with the organic mercurial thimerosal had little effect on Na+ -ATPase activity with 10 mM NaCl but lessened inhibition by 100 mM NaCl in the presence of 50 microM MgCl2. Similar thimerosal treatment reduced (Na+ + K+)-ATPase activity by half but did not appreciably affect the K0.5 for activation by either Na+ or K+, although it reduced inhibition by high Na+ concentrations. These data are interpreted in terms of two classes of extracellularly-available low-affinity sites for Na+: Na+-discharge sites at which Na+-binding can drive E2-P back to E1-P, thereby inhibiting Na+-ATPase activity, and sites activating E2-P hydrolysis and thereby stimulating Na+-ATPase activity, corresponding to the K+-acceptance sites. Since these two classes of sites cannot be identical, the data favor co-existing Na+-discharge and K+-acceptance sites. Mg2+ may stimulate Na+-ATPase activity by favoring E2-P over E1-P, through occupying intracellular sites distinct from the phosphorylation site or Na+-acceptance sites, perhaps at a coexisting low-affinity substrate site. Among other effects, thimerosal treatment appears to stimulate the Na+-ATPase reaction and lessen Na+-inhibition of the (Na+ + K+)-ATPase reaction by increasing the efficacy of Na+ in activating E2-P hydrolysis.  相似文献   

15.
Two kinds of methylglyoxal reductases were purified to apparent homogeneity from Aspergillus niger and designated MGR I and MGR II. Both enzymes consisted of a single polypeptide chain with a relative molecular mass of 36,000 (MGR I) and 38,000 (MGR II). NADPH was specifically required for the activities of both enzymes and Km values for NADPH were 54 microM (MGR I) and 6.8 microM (MGR II). MGR I was specific to 2-oxoaldehydes [glyoxal, methylglyoxal (Km = 15.4 mM) and phenylglyoxal], whereas MGR II was active on both 2-oxoaldehydes [glyoxal (Km = 10 mM), methylglyoxal (Km = 1.43 mM), phenylglyoxal (Km = 4.35 mM) and 4,5-dioxovalerate] and some aldehydes (propionaldehyde and acetaldehyde). Optimal pH values for MGR I and MGR II activities were 9.0 and 6.5 respectively. Both enzymes were inactivated by a brief incubation with 2-oxoaldehydes (glyoxal, methylglyoxal and phenylglyoxal) in the absence of NADPH. MGR I activity was competitively inhibited by NADP+ and the Ki value for NADP+ was calculated to be 0.49 mM. On the other hand, the inhibition of MGR II activity by NADP+ was of mixed type, the Ki value for NADP+ being 45 microM. MGR I was different from MGR II in amino acid composition.  相似文献   

16.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

17.
The kinetics of hydrolysis by Pseudomonas aeruginosa elastase at 37 degrees C and pH 7.3 of 3-(2-furyl)acryloyl-glycyl-L-phenylalanyl-L-phenylalanine is compatible with nonproductive substrate inhibition, i.e., v = V.[S]/(Km + [S] + [S]2/K1), and the values of Km, Ki, and kappa cat are 1.4 mM, 5.0 mM, and 240 s-1, respectively. Product inhibition experiments are in agreement with an ordered release of product, with L-phenylalanyl-L-phenylalanine, the amino-containing product, being released first from the elastase.product complex. The values of Ki for L-phenylalanyl-L-phenylalanine and 3-(2-furyl)acryloyl-glycine are 1.5 and 4.0 mM, respectively. Kinetic experiments indicate that the second molecule of substrate combines with elastase.substrate to form a dead-end elastase . (substrate)2 complex.  相似文献   

18.
Inositol-1,4-bisphosphate 4-phosphohydrolase (inositol-1,4-bisphosphatase) was highly purified from a soluble fraction of rat brain. On SDS-polyacrylamide gel electrophoresis, the purified enzyme gave a single protein band and its molecular weight was estimated to be 42000. The isoelectric point of the enzyme was 4.3. The enzyme specifically hydrolyzed the 4-phosphomonoester linkage of inositol 1,4-bisphosphate. The Km value for inositol 1,4-bisphosphate was 30 microM, and it required Mg2+ for activity. Ca2+ was a competitive inhibitor with a Ki value of 60 microM as regards the Mg2+ binding. Li+, which is known to be a strong inhibitor of inositol 1-phosphatase (EC 3.1.3.25), inhibited the enzyme activity and caused 50% inhibition at a concentration of 1 mM (IC50 = 1 mM). Li+ was an uncompetitive inhibitor of substrate binding with a Ki value of 0.6 mM. These inhibitory parameters of Li+ were quite similar to those for inositol 1-phosphatase (IC50 = 1 mM, Ki = 0.3 mM). Thus, the effect of Li+ on decreasing the free inositol level with a subsequent decrease in agonist-sensitive phosphoinositides, is caused by its inhibition of multiple enzymes involved in conversion of inositol 1,4-bisphosphate to inositol.  相似文献   

19.
The kinetic properties and inhibitor sensitivity of the Na+-H+ exchange activity present in the inner membrane of rat heart and liver mitochondria were studied. (1) Na+-induced H+ efflux from mitochondria followed Michaelis-Menten kinetics. In heart mitochondria, the Km for Na+ was 24 +/- 4 mM and the Vmax was 4.5 +/- 1.4 nmol H+/mg protein per s (n = 6). Basically similar values were obtained in liver mitochondria (Km = 31 +/- 2 mM, Vmax = 5.3 +/- 0.2 nmol H+/mg protein per s, n = 4). (2) Li+ proved to be a substrate (Km = 5.9 mM, Vmax = 2.3 nmol H+/mg protein per s) and a potent competitive inhibitor with respect to Na+ (Ki approximately 0.7 mM). (3) External H+ inhibited the mitochondrial Na+-H+ exchange competitively. (4) Two benzamil derivatives of amiloride, 5-(N-4-chlorobenzyl)-N-(2',4'-dimethyl)benzamil and 3',5'-bis(trifluoromethyl)benzamil were effective inhibitors of the mitochondrial Na+-H+ exchange (50% inhibition was attained by approx. 60 microM in the presence of 15 mM Na+). (5) Three 5-amino analogues of amiloride, which are very strong Na+-H+ exchange blockers on the plasma membrane, exerted only weak inhibitory activity on the mitochondrial Na+-H+ exchange. (6) The results indicate that the mitochondrial and the plasma membrane antiporters represent distinct molecular entities.  相似文献   

20.
Uptake of the thioether S-(2,4-dinitrophenyl)glutathione (DNPSG) in canalicular plasma membrane vesicles from rat liver is enhanced in the presence of ATP and exhibits an overshoot with a transient 5.5-fold accumulation of DNPSG. Stimulation by ATP is not caused by the generation of a membrane potential, based on responses of the indicator dye oxonol V. ATP-dependent uptake has an apparent Km of 71 microM for DNPSG and a Vmax of 0.34 nmol.min-1.mg of vesicle protein-1. Protein thiol groups are essential for transport activity as indicated by the sensitivity of DNPSG transport to sulfhydryl reagents. There is competitive inhibition with other thioethers, S-hexylglutathione (Ki = 66 microM), the photoaffinity label S-(4-azidophenacyl)glutathione (Ki = 56 microM), as well as with glutathione disulfide (Ki = 0.44 mM) and with the bile acid taurocholate (Ki = 0.61 mM). GSH (2 mM) or cholate (0.4 mM) does not inhibit. Both glutathione disulfide and taurocholate show ATP-dependent transport in the canalicular membrane vesicles which is inhibited by DNPSG. No ATP-dependent transport is found for GSH. Transport of DNPSG is also inhibited competitively by alpha-naphthyl-beta-D-glucuronide (Ki = 0.42 mM) but not by alpha-naphthylsulfate (2 mM), and there is substantial inhibition with the glucuronides from ebselen and p-nitrophenol. The results indicate that the canalicular transport system for DNPSG is directly driven by ATP and that the biliary transport of other classes of compounds may also proceed via this system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号