首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to investigate the capacity of oral and parenteral therapeutic immunization to reduce the bacterial colonization in the stomach after experimental Helicobacter pylori infection, and to evaluate whether any specific immune responses are related to such reduction. C57BL/6 mice were infected with H. pylori and thereafter immunized with H. pylori lysate either orally together with cholera toxin or intraperitoneally (i.p.) together with alum using immunization protocols that previously have provided prophylactic protection. The effect of the immunizations on H. pylori infection was determined by quantitative culture of H. pylori from the mouse stomach. Mucosal and systemic antibody responses were analyzed by ELISA in saponin extracted gastric tissue and serum, respectively, and mucosal CD4+ T cell responses by an antigen specific proliferation assay. Supernatants from the proliferating CD4+ T cells were analyzed for Th1 and Th2 cytokines. The oral, but not the parenteral therapeutic immunization induced significant decrease in H. pylori colonization compared to control infected mice. The oral immunization resulted in markedly elevated levels of serum IgG+M as well as gastric IgA antibodies against H. pylori antigen and also increased H. pylori specific mucosal CD4+ T cell proliferation with a Th1 cytokine profile. Although the parenteral immunization induced dramatic increases in H. pylori specific serum antibody titers, no increases in mucosal antibody or cellular immune responses were observed after the i.p. immunization compared to control infected mice. These findings suggest that H. pylori specific mucosal immune responses with a Th1 profile may provide therapeutic protection against H. pylori.  相似文献   

2.
The ability to induce a protective response against Helicobacter pylori infection has been investigated by systemic immunization of mice with urease formulated with the cationic lipid DC Chol. This compound acts both as a formulating agent and as an adjuvant and induces a balanced Th1/Th2 response shown to be more effective for protection in our previous studies. Urease-DC Chol induced a significant protection in prophylaxis but not in therapeutic immunization. The protection level was between 1.5 and 2 log reduction of bacterial density measured by quantitative culture compared to unimmunized-infected mice. In parallel, the protective efficacy of other H. pylori antigens formulated in a similar way and administered with DC Chol was tested. These antigens were tested alone or in combination in prophylactic and therapeutic regimens. Some combinations of antigens induced a better prophylactic or therapeutic activity than urease alone (0.5-1.5 log further reduction in prophylaxis and therapy respectively, P<0.05). The combinations that induced the best protection were different in prophylaxis and therapy. In conclusion, DC Chol provides a convenient and efficient method to formulate different antigens even when they are present in non-compatible buffers initially. Moreover, the results obtained in protection against H. pylori with such formulations should lead the way to future clinical trials.  相似文献   

3.
Helicobacter pylori is a Gram-negative bacterium that causes ulcer, atrophic gastritis, adenocarcinoma and mucosa-associated lymphoid tissue lymphoma. Moreover, an ongoing controversial role of this bacterium infection has been suggested in the etiopathogenesis of some extradigestive diseases. The humoral response to H. pylori during a natural infection can be used for diagnostic purposes and as a basis for vaccine development. Host-pathogen interactions may be investigated by means of immunoproteomics, which provides global information about relevant specific and nonspecific antigens, and thus might be suitable to identify novel vaccine candidates or serological markers of H. pylori infection as well as of different related diseases. In this review, we describe how several research groups used H. pylori proteomics combined with western blotting analysis, using sera from patients affected with different H. pylori-related pathologies, to investigate potential associations between host immune response and clinical outcomes of H. pylori infection, resulting in the rapid identification of novel, highly immunoreactive antigens.  相似文献   

4.
The immune response to Helicobacter pylori entails both innate effectors and a complex mix of Th1, Th17, and Treg adaptive immune responses. The clinical outcome of infection may well depend to a large degree on the relative balance of these responses. Vaccination with a wide range of antigens, adjuvants, and delivery routes can produce statistically significant reductions in H. pylori colonization levels in mice, though rarely sterilizing immunity. Whether similar reductions in bacterial load can be achieved in humans, and whether they would be clinically significant, is still unclear. However, progress in understanding the role of Th1, Th17, and most recently Treg cells in protection against H. pylori infection provides reason for optimism.  相似文献   

5.
6.
BACKGROUND: Duodenal ulcer in adults chronically infected with Helicobacter pylori is associated with a polarized T-helper cell type 1 (Th1) mucosal immune response, with a predominantly immunoglobulin G2 (IgG2) systemic specific response. It has been suggested that children colonized by H. pylori also produce a mucosal Th1 response, but there are few studies that have measured IgG subclass responses in children with duodenal ulcer. MATERIALS AND METHODS: Seven children with endoscopically proven duodenal ulcer and H. pylori infection and 18 children with biopsy proven H. pylori infection but no duodenal ulcer had relative concentrations of IgG subclass responses (IgGsc) against H. pylori antigens measured by ELISA. Eighteen IgG seropositive adults acted as controls. The range of antigens recognised by IgG1 and IgG2 subclass responses were investigated by Western blots. RESULTS: There were no differences in mean IgGsc responses between children with or without duodenal ulcer. Adults produced an IgG2 predominant response. Western blots showed no qualitative differences in antigens recognised by IgG1 or IgG2. CONCLUSION: Children with duodenal ulcer, in contrast to adults, produce an IgGsc response consistent with a mucosal Th2 response to H. pylori regardless of the presence of duodenal ulceration. This suggests that disease causation amongst children with H. pylori associated duodenal ulceration may not be dependant upon a mucosal Th1 biased response.  相似文献   

7.
The current status of Helicobacter pylori vaccines: a review   总被引:5,自引:0,他引:5  
Kabir S 《Helicobacter》2007,12(2):89-102
  相似文献   

8.
We previously showed that envelope (gp160)-based vaccines, used in a live recombinant virus priming and subunit protein boosting regimen, protected macaques against intravenous and intrarectal challenges with the homologous simian immunodeficiency virus SIVmne clone E11S. However, the breadth of protection appears to be limited, since the vaccines were only partially effective against intravenous challenge by the uncloned SIVmne. To examine factors that could affect the breadth and the efficacy of this immunization approach, we studied (i) the effect of priming by recombinant vaccinia virus; (ii) the role of surface antigen gp130; and (iii) the role of core antigens (Gag and Pol) in eliciting protective immunity. Results indicate that (i) priming with recombinant vaccinia virus was more effective than subunit antigen in eliciting protective responses; (ii) while both gp130 and gp160 elicited similar levels of SIV-specific antibodies, gp130 was not as effective as gp160 in protection, indicating a possible role for the transmembrane protein in presenting functionally important epitopes; and (iii) although animals immunized with core antigens failed to generate any neutralizing antibody and were infected upon challenge, their virus load was 50- to 100-fold lower than that of the controls, suggesting the importance of cellular immunity or other core-specific immune responses in controlling acute infection. Complete protection against intravenous infection by the pathogenic uncloned SIVmne was achieved by immunization with both the envelope and the core antigens. These results indicate that immune responses to both antigens may contribute to protection and thus argue for the inclusion of multiple antigens in recombinant vaccine designs.  相似文献   

9.
Mucosae constitute the major entry for most microbial pathogens but also innocuous antigens derived from ingested food, airborne matter or commensal bacteria. A large and highly specialized innate and adaptative mucosal immune system protects the mucosal surfaces and the body interior from potential injuries from the environment. The mucosal immune system has developed a variety of immune mechanisms to discriminate between non-pathogenic and pathogenic invaders. It is able to maintain tolerance against the plethora of environmental antigens and to induce potent protective immunity to avoid mucosal colonisation and organism invasion by dangerous microbial pathogens. Mucosal immunisation with appropriate antigens and immunostimulatory molecules may induce potent protective immunity against harmful pathogens. Alternatively, mucosally-induced tolerance against auto-antigens or allergens may be generated by mucosal administration of these antigens alone or with immunomodulators potentiating regulatory responses. Here, we review the properties of the mucosal immune system and briefly discuss the advances in the development of mucosal vaccines for protection against infections and for the treatment of inflammatory disorders such as autoimmune diseases or type I allergies.  相似文献   

10.
Fu S  Xu J  Li X  Xie Y  Qiu Y  Du X  Yu S  Bai Y  Chen Y  Wang T  Wang Z  Yu Y  Peng G  Huang K  Huang L  Wang Y  Chen Z 《PloS one》2012,7(2):e29552
Due to drawbacks of live attenuated vaccines, much more attention has been focused on screening of Brucella protective antigens as subunit vaccine candidates. Brucella is a facultative intracellular bacterium and cell mediated immunity plays essential roles for protection against Brucella infection. Identification of Brucella antigens that present T-cell epitopes to the host could enable development of such vaccines. In this study, 45 proven or putative pathogenesis-associated factors of Brucella were selected according to currently available data. After expressed and purified, 35 proteins were qualified for analysis of their abilities to stimulate T-cell responses in vitro. Then, an in vitro gamma interferon (IFN-γ) assay was used to identify potential T-cell antigens from B. abortus. In total, 7 individual proteins that stimulated strong IFN-γ responses in splenocytes from mice immunized with B. abortus live vaccine S19 were identified. The protective efficiencies of these 7 recombinant proteins were further evaluated. Mice given BAB1_1316 (CobB) or BAB1_1688 (AsnC) plus adjuvant could provide protection against virulent B. abortus infection, similarly with the known protective antigen Cu-Zn SOD and the license vaccine S19. In addition, CobB and AsnC could induce strong antibodies responses in BALB/c mice. Altogether, the present study showed that CobB or AsnC protein could be useful antigen candidates for the development of subunit vaccines against brucellosis with adequate immunogenicity and protection efficacy.  相似文献   

11.
黏膜是阻止病原入侵的第一道防线,黏膜免疫系统在抵抗感染方面起着至关重要的作用。通过黏膜途径接种疫苗可以同时诱导黏膜和全身免疫反应,因此,理论上针对黏膜的免疫策略是最合理和有效的。但黏膜免疫系统的复杂性和屏障作用造成抗原诱导的免疫应答水平低下,制约了黏膜疫苗的发展。M细胞(Microfoldcells)是黏膜免疫系统所独有的,其具有捕获腔内抗原和启动抗原特异性免疫应答的功能。M细胞摄取抗原的多少直接关系到黏膜疫苗的免疫效力,而利用M细胞配体可将抗原靶向递呈给M细胞,从而实现高效的黏膜免疫应答。靶向M细胞的抗原递送策略及其应用可以提高黏膜免疫应答水平,促进黏膜疫苗的研制。尽管如此,要成功研制安全高效的黏膜疫苗,今后依然有漫长的路要走,这可能有赖于进一步探究M细胞的特性和功能及黏膜免疫机制。  相似文献   

12.
Abstract: An effective immune response involves the specific recognition of and elimination of an infectious organism at multiple levels. In this context DNA immunization can present functional antigenic proteins to the host for recognition by all arms of the immune system, yet provides the opportunity to delete any genes of the infectious organism which code for antigens or pieces of antigens that may have deleterious effects. Our group has developed the use of nucleic acid immunization as a possible method of vaccination against Human immunodeficiency virus type 1 (HIV-1) [1,2,3,10,11,12]. Sera from non-human primates immunized with DNA vectors that express the envelope proteins from HIV-1 contain antibodies specific to the HIV-1 envelope. These sera also neutralize HIV-1 infection in vitro and inhibit cell to cell infection in tissue culture. Analysis of cellular responses is equally encouraging. T cell proliferation as well as cytotoxic T cell lysis of relevant env expressing target cells were observed. In addition, evidence that DNA vaccines are capable of inducing a protective response against live virus was demonstrated using a chimeric SIV/HIV (SHIV) challenge in vaccinated cynomologous macaques. We found that nucleic acid vaccination induced protection from challenge in one out of four immunized cynomolgus macaques and viral load was lower in the vaccinated group of animals versus the control group of animals. These data encouraged us to analyze this vaccination technique in chimpanzees, the most closely related animal species to man. We observed the induction of both cellular and humoral immune responses with a DNA vaccine in chimpanzees. These studies demonstrate the utility of this technology to induce relevant immune responses in primates which may ultimately lead to effective vaccines.  相似文献   

13.
Mucosal immunity and vaccination.   总被引:1,自引:0,他引:1  
The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systemic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

14.
Park S  Han SU  Lee KM  Park KH  Cho SW  Hahm KB 《Helicobacter》2007,12(1):49-58
BACKGROUND: Arachidonic acid metabolites have been considered as pivotal mediators in Helicobacter pylori-induced inflammatory response, which are mainly metabolized by two distinct enzymes: cyclooxygenase (COX) and lipoxygenase (LOX). While COX has become well known to play a key role in either carcinogenesis or inflammation related to H. pylori infection, little is known regarding the implication of LOX in H. pylori infection. In this study, we evaluated the roles of 5-LOX and its metabolites in H. pylori-induced host responses and further a potential beneficial action of specific LOX inhibitors against H. pylori infection. MATERIALS AND METHODS: Expressions of cytosolic phospholipase A(2) (cPLA(2)), COX-2, and 5-LOX after H. pylori infection were evaluated by immunofluorescence staining and Western blotting. Synthesis of LOX metabolites was measured with reversed-phase high-performance liquid chromatography. For analyzing the influence of 5-LOX inhibitors, nordihydroguaiaretic acid (NDGA) and geraniin, on H. pylori-induced inflammatory responses, RNase protection assay and RT-PCR were performed. RESULTS: H. pylori stimulated the translocation of cPLA(2) from cytoplasm to nucleus and increased the biosynthesis of hydroxyeicosatetraenoic acids (HETEs) as a predominant form of 5S-HETE in gastric epithelium. NDGA exerted a strong suppression activity of H. pylori-induced 5-LOX signaling. The administration of LOX inhibitors was related with down-expression of proinflammatory mediators such as interleukin-8 and tumor necrosis factor-alpha in both H. pylori-infected gastric epithelial cells and macrophage cells. CONCLUSION: LOX modulation with its specific inhibitors could impose significant anti-inflammatory responses after H. pylori infection, based on the fact that H. pylori infection provoked gastric inflammation through metabolizing arachidonic acid by the 5-LOX pathway.  相似文献   

15.
The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of longterm T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.  相似文献   

16.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination ‘co-delivery’ and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell – a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

17.
Mucosal immunity and vaccination   总被引:7,自引:0,他引:7  
Abstract The gut mucosal immune system is a critical component of the body's defense against pathogenic organisms, especially those responsible for enteric infections associated with diarrhoeal disease. Attempts to vaccinate against infections of mucosal tissues have been less successful than vaccination against systematic infections, to a large extent reflecting a still incomplete knowledge about the most efficient means for inducing protective local immune responses at these sites. Secretory IgA (SIgA) is the predominating immunoglobulin along mucosal surfaces, and SIgA antibodies generated in gastrointestinal, respiratory or genito-urinary mucosal tissues can confer protection against infections affecting or originating in these sites. An efficacious intestinal SIgA immunity-inducing oral vaccine against cholera has been developed recently, and development of oral vaccines against other enteric infections such as those caused by enterotoxigenic Escherichia coli, Shigella and rotaviruses is in progress as well. Based on the concept of a common mucosal immune system through which activated lymphocytes from the gut can disseminate immunity to other mucosal and glandular tissues, there is currently also much interest in the possibility of developing oral vaccines against infections in the respiratory and urogenital tracts. However, the large and repeated antigen doses often required to achieve a protective immune response still makes this vaccination approach impractical for many purified antigens. There is, therefore, a great need to develop strategies for enhancing delivery of antigen to the mucosal immune system as well as to identify mucosa-active immunostimulating agents (adjuvants). These and other aspects of mucosal immunity in relation to immunization and vaccine development are discussed in this short review article.  相似文献   

18.
DNA vaccination with mammalian-expressible plasmid DNA encoding protein antigens is known to be an effective means to elicit cell-mediated immunity, sometimes in the absence of a significant antibody response. This may be contrasted with protein vaccination, which gives rise to antibody responses with little evidence of cell-mediated immunity. This has led to considerable interest in DNA vaccination as a means to elicit cell-mediated immune responses against conserved viral antigens or intracellular cancer antigens, for the purpose of therapeutic vaccination. However, almost all current vaccines are used prophylactically and work by producing antibodies rather than cell mediated immune responses. In the present study we have therefore explored the combination of DNA and protein forms of an antigen using two exemplary prophylactic vaccine antigens, namely inactivated influenza virion and hepatitis-B surface antigen. We studied the effects of various combinations of DNA and protein on the antibody response. Co-administration of soluble forms of DNA and protein representations of the same antigen gave rise to the same level of antibody response as if protein were administered alone. In contrast, we found that when these antigens are entrapped in the same liposomal compartment, that there was a strong synergistic effect on the immune response, which was much greater than when either antigen was administered alone, or in various other modes of combination (e.g. co-administration as free entities, also pooled liposomal formulations where the two materials were contained in separate liposomal vehicles in the same suspension). The synergistic effect of liposomally co-entrapped DNA and protein exceeded, markedly, the well known adjuvant effects of plasmid DNA and liposomes. We have termed this new approach to vaccination 'co-delivery' and suggest that it may derive from the simultaneous presentation of antigen via MHC class-I (DNA) and MHC class-II (protein) pathways to CD8+ and CD4+ cells at the same antigen presenting cell--a mode of presentation that would commonly occur with live viral pathogens. We conclude that co-delivery is a very effective means to generate protective antibody responses against viral pathogens.  相似文献   

19.
A key suppressor role has recently been ascribed to the natural CD4+CD25+ regulatory T cells (Treg), the removal of which leads to the development of autoimmune disease and aggravated pathogen-induced inflammation in otherwise normal hosts. The repertoire of antigen specificities of Treg is as broad as that of naive T cells, recognizing both self and non-self antigens, enabling Treg to control a broad range of immune responses. Although widely acknowledged to play a role in the maintenance of self-tolerance, recent studies indicate that Treg can be activated and expanded against bacterial, viral and parasite antigens in vivo. Such pathogen-specific Treg can prevent infection-induced immunopathology but may also increase the load of infection and prolong pathogen persistence by suppressing protective immune responses. This review discusses the role of Treg in the prevention of exaggerated inflammation favoring chronicity in bacterial or fungal infections and latency in viral infections. Special attention is given to the role of Treg in the modulation of gastric inflammation induced by Helicobacter pylori infection. Findings in both experimentally infected mice and humans with natural infection indicate that Treg are important in protecting the H. pylori-infected host against excessive gastric inflammation and disease symptoms but on the negative side promote bacterial colonization at the gastric and duodenal mucosa which may increase the risk in H. pylori-infected individuals to develop duodenal ulcers.  相似文献   

20.
The efficacy of a new vaccination procedure against Schistosoma mansoni, involving intradermal injection of nonliving antigen combined with the bacterial adjuvant Mycobacterium bovis strain bacillus Calmette Guérin, was tested in several strains of mice. Development of protection against subsequent infection was compared with in vivo skin test reactivity and in vitro humoral reactivity to soluble and surface-associated schistosome antigens. Significant levels of resistance and immune response were displayed by many inbred mouse strains, including C57BL/6J, C3H/HeN, and CBA/J, as well as outbred Swiss-Webster mice. However, no definite correlation was observed between the level of any particular immune response and the level of resistance to challenge S. mansoni infection. Development of protective immunity was also examined in mice with various immune defects, to determine whether these responses are relevant to resistance in this model. Animals with defective specific immediate hypersensitivity response due to deficiencies in IgE (SJL/J) or mast cell (W/Wv) production displayed strong resistance as a result of immunization. Likewise, mice bearing the lpsd (C3H/HeJ) or xid (CBA/N) mutations, affecting cellular or humoral response to certain thymus-independent antigens, developed significant levels of resistance after immunization. A/J mice, with defects in cellular recognition of bacterial endotoxin as well as deficiencies in natural killer cell activity and complement function, also showed significant protective immunity. Thus, these reactivities do not appear to be essential to the resistance against S. mansoni induced by the nonliving vaccine. Two nonresponder strains were identified, P and BALB/c. P mice were defective in specific delayed hypersensitivity response as well as resistance to infection. However, BALB/c mice showed no obvious immune deficiencies at the time of challenge. These results agreed with previous findings in mice immunized by exposure to radiation-attenuated cercariae with one exception; BALB/c mice were protected by vaccination with irradiated cercariae but not by the nonliving vaccine. Thus, further examination of immune response in mice identified in this study as high and low responder strains should allow characterization of critical immune resistance mechanisms induced by the nonliving vaccine, as well as immune mechanisms operating in common between these two models of resistance to S. mansoni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号