首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Esterase is the key enzyme involved in microbial degradation of phthalate esters (PAEs). In this study, an intracellular esterase was purified from a coastal sediment fungus Fusarium sp. DMT-5-3 capable of utilizing dimethyl terephthalate (DMT) as a substrate. The purified enzyme is a polymeric protein consisting of two identical subunits with a molecular mass of about 84 kDa. The enzyme showed a maximum esterase activity at 50 °C and was stable below 30 °C. The optimal pH was 8.0 and the enzyme was stable between pH 6.0 and 10.0. The esterase activity was inhibited by Cr3+, Hg2+, Cu2+, Zn2+, Ni2+, and Cd2+. Substrate specificity analysis showed that the enzyme was specific to DMT hydrolysis, but had no effect on other isomers of dimethyl phthalate esters (DMPEs) or monomethyl phthalate esters (MMPEs). These findings suggest that the phthalate esterase produced by Fusarium sp. DMT-5-3 is inducible and distinctive esterases involved in hydrolysis of the two carboxylic ester linkages of DMPEs.  相似文献   

2.
An extracellular, debranching isoamylase fromHendersonula toruloidea ATCC 64930, grown on starch, was purified 12-fold to an electrophoretically homogeneous state. The purified enzyme (estimated mol wt 83000) was optimally active at pH 6.0 and 50°C and remained active when held at 70°C (30 min) and at pH 6 to 8 for 24 h. Na+, Fe2+ and Ba2+ (at 5mm) enhanced enzyme activity while Hg2+, Zn2+ and Cu2+ (at 5mm) were inhibitory. The enzyme hydrolysed amylopectin (Km, 0.25 mg/ml), forming maltose, maltotriose and maltotetraose and hydrolyzed glycogen (Km, 0.29 mg/ml) and soluble starch (Km, 0.42 mg/ml) forming maltotriose and maltotetraose. Pullulan was not hydrolyzed.  相似文献   

3.
Protocatechuate 3,4-dioxygenase was isolated from a gram-positive bacterium, Nocardia erythropolis, the enzyme participates in the phthalate ester metabolism in the bacterium. Cultural conditions for production of the enzyme, the purification procedure, and some properties of the enzyme were studied. A bouillon (beef) medium was the most effective among those tested for cell growth and enzyme formation. The effect was due to the ring closure type of creatine compounds. Protocatechuate 3,4-dioxygenase was purified from the cell-free extract ca. 1,400-fold and it gave a single band on polyacrylamide gel electrophoresis. The molecular weight was estimated to be ca. 150,000. The optimal pH and temperature were pH 8.0 and 40°C, respectively. The enzyme was stable in a pH range from 7.6 to 8.6 and below 42°C. The enzyme was inhibited by several metals such as Pb2+ , Cd2+ and Hg2+ . The enzyme was active on a wide range of o-dihydroxyphenyl compounds, in contrast to the high specificity of similar enzymes from gram-negative bacteria (Pseudomonas). The enzyme had a broad absorption band in the visible region with a peak around 450 nm, suggesting the presence of non-heme ion(s) bound to the enzyme as a cofactor. The spectrum changed markedly upon addition of the substrate, possibly showing the formation of an enzyme-substrate complex.  相似文献   

4.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

5.
An aminopeptidase isolated from the cytoplasmic fraction of a cell extract ofStreptococcus mitis ATCC 903 was purified 330-fold by ion-exchange chromatography, gel filtration, and hydroxyapatite chromatography. The partially purified enzyme had a broad substrate specificity. Twelve aminoacyl-ß-naphthylamide substrates were hydrolyzed and also several di-, tri-, tetra-, and pentapeptides and bradykinin. The enzyme hydrolyzed arginine-ß-naphthylamide at the highest rate. Optimal conditions for activity were at pH 7.0–7.2 and at 37–40°C. The molecular weight of the enzyme was estimated to be 93,000. The enzyme was activated by Co2+ ions. Hg2+ inhibited the activity completely. SDS, EDTA, urea, and pCMB also inhibited activity. Inhibition by EDTA could be completely reversed by dialysis and addition of Co2+ ions. Reducing agents, sodium fluoride, and PMSF had no effect on the activity of the enzyme. The isoelectric point of the enzyme was at pH 4.3. High substrate concentrations inhibited activity. Substrate inhibition increased in the presence of high concentrations of Co2+ ions.  相似文献   

6.
A new acid carboxypeptidase was purified fromAspergillus oryzae grown on solid bran culture medium. The purified enzyme was found to be homogeneous by disc gel electrophoresis at pH 9.4 and isoelectric focusing. The enzyme was termedA. oryzae acid carboxypeptidase O-1 with isoelectric point 4.08. The substrate specificity of the new enzyme was investigated with proangiotensin, angiotensin, and bradykinin. Even when the proline was present at the penultimate position of the peptide, the enzyme rapidly hydrolyzed the carboxyterminal Pro-X (X=amino acid) peptide bond. TheK m andk cat values for angiotension (–Pro7–Phe8) at pH 3.7 and 30°C were 0.2 mM and 1.7 sec–1, respectively.  相似文献   

7.
In this study we purified and characterized a fibrinolytic protease from the mycelia of Perenniporia fraxinea. The apparent molecular mass of the purified enzyme was estimated to be 42 kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE), fibrin zymography and size exclusion using fast protein liquid chromatography (FPLC). The first 20 amino acid residues of the N-terminal sequence were ASYRVLPITKELLPPEFFVA, which shows a high degree of similarity with a fungalysin metallopeptidase from Coprinopsis cinerea. The optimal reaction pH value and temperature were pH 6.0 and 35–40 °C, respectively. Results for the fibrinolysis pattern showed that the protease rapidly hydrolyzed the fibrin α-chain followed by the β-chain. The γ–γ chains were also hydrolyzed, but more slowly. The purified protease effectively hydrolyzed fibrinogen, preferentially digesting the Aα-chains of fibrinogen, followed by Bβ- and γ-chains. We found that protease activity was inhibited by Cu2+, Fe3+, and Zn2+, but enhanced by the additions of Mn2+, Mg2+ and Ca2+ metal ions. Furthermore, the protease activity was inhibited by EDTA, and it was found to exhibit a higher specificity for the chromogenic substrate S-2586 for chymotrypsin, indicating that the enzyme is a chymotrypsin-like metalloprotease. The mycelia of P. fraxinea may thus represent a source of new therapeutic agents to treat thrombosis.  相似文献   

8.
The fungus Cunninghamella verticillata was selected from isolates of oil-mill waste as a potent lipase producer as determined by the Rhodamine-B plate method. The lipase was purified from C. verticillata by ammonium sulphate fractionation, ion exchange chromatography and gel filtration. The purified enzyme was formed from a monomeric protein with molecular masses of 49 and 42 kDa by SDS–PAGE and gel filtration, respectively. The optimum pH at 40 °C was 7.5 and the optimum temperature at pH 7.5 was 40 °C. The enzyme was stable between a pH range of 7.5 and 9.0 at 30 °C for 24 h. The enzyme activity was strongly inhibited by AgNO3, NiCl2, HgCl2, CdCl2 and EDTA. However, the presence of Ca2+, Mn2+ and Ba2+ ions enhanced the activity of the enzyme. The activity of purified lipase with respect to pH, temperature and salt concentration was optimized using a Box–Behnken design experiment. A polynomial regression model used in analysing this data, showed a significant lack of fitness. Therefore, quadratic terms were incorporated in the regression model through variables. Maximum lipase activity (100%) was observed with 2 mM CaCl2, (pH 7.5) at a temperature of 40 °C. Regression co-efficient correlation was calculated as 0.9956.  相似文献   

9.
Bacillus species producing a thermostable phytase was isolated from soil, boiled rice, and mezu (Korean traditinal koji). The activity of phytase increased markedly at the late stationary phase. An extracellular phytase from Bacillus sp. KHU-10 was purified to homogeneity by acetone precipitation and DEAE-Sepharose and phenyl-Sepharose column chromatographies. Its molecular weight was estimated to be 46 kDa on gel filtration and 44 kDa on SDS-polyacrylamide gel elctrophoresis. Its optimum pH and temperature for phytase activity were pH 6.5-8.5 and 40°C without 10 mM CaCl2 and pH 6.0-9.5 and 60°C with 10 mM CaCl2. About 50% of its original activity remained after incubation at 80°C or 10 min in the presence of 10 mM CaCl2. The enzyme activity was fairly stable from pH 6.5 to 10.0. The enzyme had an isoelectric point of 6.8. As for substrate specificity, it was very specific for sodium phytate and showed no activity on other phosphate esters. The K m value for sodium phytate was 50 M. Its activity was inhibited by EDTA and metal ions such as Ba2+, Cd2+, Co2+, Cr3+, Cu2+, Hg2+, and Mn2+ ions.  相似文献   

10.
Aspergillus nidulans PW1 produces an extracellular carboxylesterase activity that acts on several lipid esters when cultured in liquid media containing olive oil as a carbon source. The enzyme was purified by gel filtration and ion exchange chromatography. It has an apparent MW and pI of 37 kDa and 4.5, respectively. The enzyme efficiently hydrolyzed all assayed glycerides, but showed preference toward short- and medium-length chain fatty acid esters. Maximum activity was obtained at pH 8.5 at 40°C. The enzyme retained activity after incubation at pHs ranging from 8 to11 for 12 h at 37°C and 6 to 8 for 24 h at 37°C. It retained 80% of its activity after incubation at 30 to 70°C for 30 min and lost 50% of its activity after incubation for 15 min at 80°C. Noticeable activation of the enzyme is observed when Fe2+ ion is present at a concentration of 1 mM. Inhibition of the enzyme is observed in the presence of Cu2+, Fe3+, Hg2+, and Zn2+ ions. Even though the enzyme showed strong carboxylesterase activity, the deduced N-terminal amino acid sequence of the purified protein corresponded to the protease encoded by prtA gene.  相似文献   

11.
Phthalate esters, such as di-2-ethyl hexyl phthalate (DEHP) and di-n-butyl phthalate (DBP), were efficiently removed from wastewater by inoculating viable cells of Nocardia erythropolis, a bacterium capable of rapidly degrading phthalate esters, in activated sludge. When the wastewater containing 1500 ppm of DEHP was treated with the activated sludge inoculated with Nocardia erythropolis, the DEHP was found to be removed at a rate of 98.2% in 1 day and to be gas-chromatographically free on and after the 3rd day. Activated sludges, in particular, when high concentration of substances was used, were efficiently prevented from deflocculation of sludge by inoculation of Nocardia erythropolis, and moreover, the deflocked sludge was restored and recovered by the addition of Nocardia erythropolis.  相似文献   

12.
A highly enantioselective l-menthyl acetate esterase was purified to homogeneity from Burkholderia cepacia ATCC 25416, with a recovery of 4.8% and a fold purification of 22.7. The molecular weight of the esterase was found to be 37 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The N-terminal amino acid sequence was “MGARTDA”, and there was no homology in contrast to other Burkholderia sp. esterases. This enzyme preferentially hydrolyzed short-chain fatty acid esters of menthol with high stereospecificity and high hydrolytic activity, while long-chain l-menthyl esters were poor substrates. Considered its substrate specificity and N-terminal sequence, this esterase was concluded as a new enzyme belonging to the carboxylesterase group (EC 3.1.1.1) of esterase family. The optimum temperature and pH for enzyme activity using racemic menthyl acetate as substrate were 30 °C and 7.0, respectively. The esterase was more stable in the pH range of 7.0–9.0 and temperature range of 30–40 °C. Hydrolytic activity was enhanced by Ca2+, K+ and Mg2+, but completely inhibited by Hg2+, Cu2+, ionic detergents and phenylmethylsulfonyl fluoride (PMSF) at 0.01 M concentration.  相似文献   

13.
Phthalate oxygenase was induced in Rhodococcus erythropolis S-1, a Gram-positive bacterium, when this bacterium was cultured in a medium containing phthalate as a sole carbon source. The enzyme was purified 118-fold with 4.7% activity yield. The purified enzyme appeared homogenous on native PAGE. This enzyme is a large protein (213 kDa), a tetramer of identical 56kDa monomers, and a flavoprotein containing FAD with NADH-dependent dioxygenase activity. The enzyme is specific for phthalate and other closely related aromatic compounds. Optimum pH and temperature were 6.5 and 40°C. The Km for phthalate and NADH were 0.040 mM and 0.069 mM. The enzyme catalyzes dihydroxylation of phthalate to form 3,4-dihydro-3,4-dihydroxyphthalate with consumption of NADH and oxygen.  相似文献   

14.
Summary Three alkaline amylases have been newly discovered in a culture medium of an alkalophilic Bacillus sp. H-167 isolated from soils. These amylases produced maltohexaose as the main product from starch. All three amylases were purified to give a single band on disc electrophoresis. They had similar properties except for molecular weight (MW) and isoelectric point (pI): optimum pH, 10.5; optimum temperature, 60°C; pH stability, 7–12; heat stability, 50–55°C; MW, 59000–80000; pI, 3.5–4.3. Metal ions such as Hg2+, Zn2+, Pb2+, Co2+ and Ni2+ inhibited the enzyme activity. All the enzymes hydrolyzed starch to produce preferentially maltohexaose, rather than maltose and maltotetraose, in an early stage of the reaction. The yield of maltohexaose reached 25%–30% from soluble starch.  相似文献   

15.
Summary An extracellular naringinase (an enzyme complex consisting of α-L-rhamnosidase and β-D-glucosidase activity, EC 3.2.1.40) that hydrolyses naringin (a trihydroxy flavonoid) for the production of rhamnose and glucose was purified from the culture filtrate of Aspergillus niger 1344. The enzyme was purified 38-fold by ammonium sulphate precipitation, ion exchange and gel filtration chromatography with an overall recovery of 19% with a specific activity of 867 units per mg of protein. The molecular mass of the purified enzyme was estimated to be about 168 kDa by gel filtration chromatography on a Sephadex G-200 column and the molecular mass of the subunits was estimated to be 85 kDa by sodium dodecyl sulphate-Polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme had an optimum pH of 4.0 and temperature of 50 °C, respectively. The naringinase was stable at 37 °C for 72 h, whereas at 40 °C the enzyme showed 50% inactivation after 96 h of incubation. Hg2+, SDS, p-chloromercuribenzoate, Cu2+ and Mn2+ completely inhibited the enzyme activity at a concentration of 2.5–10 mM, whereas, Ca2+, Co2+ and Mg2+ showed very little inactivation even at high concentrations (10–100 mM). The enzyme activity was strongly inhibited by rhamnose, the end product of naringin hydrolysis. The enzyme activity was accelerated by Mg2+ and remained stable for one year after storage at −20 °C. The purified enzyme preparation successfully hydrolysed naringin and rutin, but not hesperidin.  相似文献   

16.
An extracellular lipase from Nomuraea rileyi MJ was purified 23.9-fold with 1.69% yield by ammonium sulfate precipitation followed by Sephacryl S-100 HR column chromatography. By mass spectrometry and SDS-polyacrylamide gel electrophoresis, the molecular weight of the homogenous lipase was 81 kDa. The N-terminal sequence was determined as LeuSerValGluGlnThrLysLeuSerLysLeuAlaTyrAsnAsp and it showed no homology to sequences of known lipases. The optimum pH and temperature for activity were 8.0 and 35 °C, respectively. The enzyme was stable in the pH range 7.0-9.0 and at 15-35 °C for 1 h. Higher activity was observed in the presence of surfactants, Na+, NH4+ ions, NaN3 and ethylenediaminetetraacetic acid (EDTA), while Co2+ and Cu2+ ions, cysteine and dithiothreitol (DTT) strongly inhibited activity. The purified lipase hydrolyzed both synthetic and natural triglycerides with maximum activity for trilaurin and coconut oil, respectively. It also hydrolyzed esters of p-nitrophenol (pNP) with highest activity for p-nitrophenyl caprate (pNPCA). The purified lipase was found to promote N. rileyi spore germination in vitro in that germination reached 98% in conidial suspensions containing purified lipase at 2.75 U. Moreover, it enhanced toxicity of N. rileyi toward Spodoptera litura larvae with mortality via topical application reaching 63.3% at 4-10 days post-treatment which calculated to be 2.7 times higher than the mortality obtained using conidial suspensions alone.  相似文献   

17.
A feruloyl esterase (StFAE-A) produced by Sporotrichum thermophile was purified to homogeneity. The purified homogeneous preparation of native StFAE-A exhibited a molecular mass of 57.0±1.5 kDa, with a mass of 33±1 kDa on SDS-PAGE. The pI of the enzyme was estimated by cation-exchange chromatofocusing to be at pH 3.1. The enzyme activity was optimal at pH 6.0 and 55–60 °C. The purified esterase was stable at the pH range 5.0–7.0. The enzyme retained 70% of activity after 7 h at 50 °C and lost 50% of its activity after 45 min at 55 °C and after 12 min at 60 °C. Determination of k cat/K m revealed that the enzyme hydrolyzed methyl p-coumarate 2.5- and 12-fold more efficiently than methyl caffeate and methyl ferulate, respectively. No activity on methyl sinapinate was detected. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose and it hydrolyzed 4-nitrophenyl 5-O-trans-feruloyl--l-arabinofuranoside (NPh-5-Fe-Araf) 2-fold more efficiently than NPh-2-Fe-Araf. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with xylanase from S. thermophile (a maximum of 34% total ferulic acid released after 1 h incubation). StFAE-A by itself could release FA, but at a level almost 47-fold lower than that obtained in the presence of xylanase. The potential of StFAE-A for the synthesis of various phenolic acid esters was tested using a ternary water-organic mixture consisting of n-hexane, 1-butanol and water as a reaction system.  相似文献   

18.
The removal of phthalate esters, such as di-2-ethyl hexyl phthalate (DEHP) was efficiently effected by inoculating and retaining viable cells of Nocardia erythropolis, a bacterium known capable of rapidly degrading phthalate esters, in soil column. When an influent containing 3000 ppm of DEHP was passed through a column inoculated with Nocardia erythropolis, the eluent from the column was gas-chromatographically free of DEHP after 1 day. Residual DEHP on the support after 32 days in the column inoculated with Nocardia erythropolis was only 0.14% against the total amount of DEHP fed, whereas it was 5.2% in the uninoculated column. Microorganisms capable of utilizing DEHP were isolated from the inoculated and un- inoculated columns after 32 days operation and identified. The DEHP utilizing microorganisms in the inoculated column were found to belong to Nocardia erythropolis, Nocardia restricta and Pseudomonas putida (Biotype B), and those in the uninoculated column to Nocardia erythropolis, Pseudomonas putida (Biotype A and B) and Pseudomonas acidovorans. In particular, strain 1-1 of Nocardia erythropolis isolated from the inoculated column was morphologically and biochemically identical with the inoculated Nocardia erythropolis S-l. Ratio of all Nocardia erythropolis to total cells recovered increased from 10.8% immediately after inoculation to 27.2% after 32 days in inoculated column.  相似文献   

19.
Hydroxycinnamic acid ester hydrolase from the wheat bran culture medium of Aspergillus japonicus was purified 255-fold by ammonium sulfate fractionation, DEAE-Sephadex treatment and column chromatographies on DEAE-Sephadex, CM-Sephadex and various other Sephadexes. The purified enzyme was free from tannase and found to be homogeneous on polyacrylamide disc gel electrophoresis. Its molecular weight was estimated to be 150,000 by gel filtration and 142,000 by SDS-gel electrophoresis. The isoelectric point of the enzyme was pH 4.80. As to its amino acid composition, aspartic acid and glycine were abundant. The optimum pH and temperature for the enzyme reaction were, respectively, 6.5 and 55°C when chlorogenic acid was used as a substrate. The enzyme was stable between pH 3.0 to 7.5 and inactivated completely by heat treatment at 70°C for 10 min.

All metal ions examined did not activate the enzyme, while Hg++ reduced its activity. The enzyme was markedly inhibited by diisopropylfluorophosphate and an oxidizing reagent, iodine, although it was not affected so much by metal chelating or reducing reagents. The purified enzyme hydrolyzed not only esters of hydroxycinnamic acids such as chlorogenic acid, caffeoyl tartaric acid and p-coumaroyl tartaric acid, but also ethyl and benzyl esters of cinnamic acid. However, the enzyme did not act on ethyl esters of crotonic acid and acrylic acid or esters of hydroxybenzoic acids.  相似文献   

20.
A newly isolated Bacillus species, which grew optimally at 30°C and pH 10, produced a carboxymethylcellulase in a medium containing 10 g CM-cellulose/l. The enzyme, when partially purified by gel filtration, had a mass of about 29 kDa as determined by both SDS-PAGE and gel filtration chromatography. It was optimally active at pH 9.5 and 40°C, and was stable from pH 7 to 11 at 4°C for 24 h. The enzyme was stimulated by Ca2+ (1mm) but was completely inhibited by Hg2+ (1mm). Neither EDTA nor EGTA (10mm) affected the activity.The author is with the Department of Biological Sciences, University of Jordan. PO Box 2686, Amman 11181, Jordan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号