首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sooty mangabeys (SMs) naturally infected with simian immunodeficiency virus (SIV) do not develop AIDS despite high levels of virus replication. At present, the mechanisms underlying this disease resistance are poorly understood. Here we tested the hypothesis that SIV-infected SMs avoid immunodeficiency as a result of virus replication occurring in infected cells that live significantly longer than human immunodeficiency virus (HIV)-infected human cells. To this end, we treated six SIV-infected SMs with potent antiretroviral therapy (ART) and longitudinally measured the decline in plasma viremia. We applied the same mathematical models used in HIV-infected individuals and observed that SMs naturally infected with SIV also present a two-phase decay of viremia following ART, with the bulk (92 to 99%) of virus replication sustained by short-lived cells (average life span, 1.06 days), and only 1 to 8% occurring in longer-lived cells. In addition, we observed that ART had a limited impact on CD4(+) T cells and the prevailing level of T-cell activation and proliferation in SIV-infected SMs. Collectively, these results suggest that in SIV-infected SMs, similar to HIV type 1-infected humans, short-lived activated CD4(+) T cells, rather than macrophages, are the main source of virus production. These findings indicate that a short in vivo life span of infected cells is a common feature of both pathogenic and nonpathogenic primate lentivirus infections and support a model for AIDS pathogenesis whereby the direct killing of infected cells by HIV is not the main determinant of disease progression.  相似文献   

2.
3.
The repertoire of functional CD4(+) T lymphocytes in human immunodeficiency virus type 1-infected individuals remains poorly understood. To explore this issue, we have examined the clonality of CD4(+) T cells in simian immunodeficiency virus (SIV)-infected macaques by assessing T-cell receptor complementarity-determining region 3 (CDR3) profiles and sequences. A dominance of CD4(+) T cells expressing particular CDR3 sequences was identified within certain Vbeta-expressing peripheral blood lymphocyte subpopulations in the infected monkeys. Studies were then done to explore whether these dominant CD4(+) T cells represented expanded antigen-specific cell subpopulations or residual cells remaining in the course of virus-induced CD4(+) T-cell depletion. Sequence analysis revealed that these selected CDR3-bearing CD4(+) T-cell clones emerged soon after infection and dominated the CD4(+) T-cell repertoire for up to 14 months. Moreover, inoculation of chronically infected macaques with autologous SIV-infected cell lines to transiently increase plasma viral loads in the monkeys resulted in the dominance of these selected CDR3-bearing CD4(+) T cells. Both the temporal association of the detection of these clonal cell populations with infection and the dominance of these cell populations following superinfection with SIV suggest that these cells may be SIV specific. Finally, the inoculation of staphylococcal enterotoxin B superantigen into SIV-infected macaques uncovered a polyclonal background underlying the few dominant CDR3-bearing CD4(+) T cells, demonstrating that expandable polyclonal CD4(+) T-cell subpopulations persist in these animals. These results support the notions that a chronic AIDS virus infection can induce clonal expansion, in addition to depletion of CD4(+) T cells, and that some of these clones may be SIV specific.  相似文献   

4.
CD4(+) T-cell dysfunction highlighted by defects within the intracellular signaling cascade and cell cycle has long been characterized as a direct and/or indirect consequence of human immunodeficiency virus (HIV) infection in humans and simian immunodeficiency virus (SIV) infection in rhesus macaques (RM). Dysregulation of the M phase of the cell cycle is a well-documented effect of HIV or SIV infection both in vivo and in vitro. In this study the effect of SIV infection on the modulation of two important regulators of the M phase-polo-like kinases Plk3 and Plk1-was investigated. We have previously shown that Plk3 is markedly downregulated in CD4(+) T cells from SIV-infected disease-susceptible RM but not SIV-infected disease-resistant sooty mangabeys (SM), denoting an association of downregulation with disease progression. Here we show that, in addition to the downregulation, Plk3 exhibits aberrant activation patterns in the CD4(+) T cells from SIV-infected RM following T-cell receptor stimulation. Interestingly, in vitro SIV infection of CD4(+) T cells leads to the upregulation, rather than downregulation, of Plk3, suggesting that different mechanisms operate in vitro and in vivo. In addition, CD4(+) T cells from RM with high viral loads exhibited consistent and significant upregulation of Plk1, concurrent with an aberrant activation-induced Plk1 response, suggesting complex mechanisms of SIV-induced M-phase abnormalities in vivo. Altogether this study presents a novel mechanism underlying M-phase defects observed in CD4(+) T cells from HIV or SIV-infected disease-susceptible humans and RM which may contribute to aberrant T-cell responses and disease pathogenesis.  相似文献   

5.
Simian immunodeficiency virus infection in neonatal macaques   总被引:5,自引:0,他引:5       下载免费PDF全文
Children with human immunodeficiency virus infection often have higher viral loads and progress to AIDS more rapidly than adults. Since the intestinal tract is a major site of early viral replication and CD4(+) T-cell depletion in adults, we examined the effects of simian immunodeficiency virus (SIV) on both peripheral and intestinal lymphocytes from 13 neonatal macaques infected with SIVmac239. Normal neonates had more CD4(+) T cells and fewer CD8(+) T cells in all tissues than adults. Surprisingly, neonates had substantial percentages of CD4(+) T cells with an activated, memory phenotype (effector CD4(+) T cells) in the lamina propria of the intestine compared to peripheral lymphoid tissues, even when examined on the day of birth. Moreover, profound and selective depletion of jejunum lamina propria CD4(+) T cells occurred in neonatal macaques within 21 days of infection, which was preceded by large numbers of SIV-infected cells in this compartment. Furthermore, neonates with less CD4(+) T-cell depletion in tissues tended to have higher viral loads. The persistence of intestinal lamina propria CD4(+) T cells in some neonates with high viral loads suggests that increased turnover and/or resistance to CD4(+) T-cell loss may contribute to the higher viral loads and increased severity of disease in neonatal hosts.  相似文献   

6.
No information exists regarding immune responses to human immunodeficiency virus (HIV) infection in the foreskin or glans of the human penis, although this is a key tissue for HIV transmission. To address this gap, we characterized antiviral immune responses in foreskin of male rhesus macaques (RMs) inoculated with simian immunodeficiency virus (SIV) strain SIVmac251 by penile foreskin exposure. We found a complete population of immune cells in the foreskin and glans of normal RMs, although B cells were less common than CD4(+) and CD8(+) T cells. IgG-secreting cells were detected by enzyme-linked immunospot (ELISPOT) assay in cell suspensions made from the foreskin. In the foreskin and glans of SIV-infected RMs, although B cells were less common than CD4(+) and CD8(+) T cells, SIV-specific IgG antibody was present in foreskin secretions. In addition, cytokine-secreting SIV-specific CD8(+) T cells were readily found in cell suspensions made from the foreskin. Although potential HIV target cells were found in and under the epithelium covering all penile surfaces, the presence of antiviral effector B and T cells in the foreskin suggests that vaccines may be able to elicit immunity in this critical site to protect men from acquiring HIV.  相似文献   

7.
Infection with human immunodeficiency virus or simian immunodeficiency virus (SIV) induces virus-specific CD8(+) T cells that traffic to lymphoid and nonlymphoid tissues. In this study, we used Gag-specific tetramer staining to investigate the frequency of CD8(+) T cells in peripheral blood and the central nervous system of Mamu-A*01-positive SIV-infected rhesus macaques. Most of these infected macaques were vaccinated prior to SIVmac251 exposure. The frequency of Gag(181-189) CM9 tetramer-positive cells was consistently higher in the cerebrospinal fluid and the brain than in the blood of all animals studied and did not correlate with either plasma viremia or CD4(+)-T-cell level. Little or no infection in the brain was documented for most animals by nucleic acid sequence-based amplification or in situ hybridization. These data suggest that this Gag-specific response may contribute to the containment of viral replication in this locale.  相似文献   

8.
9.
It has recently been shown that rapid and profound CD4(+) T-cell depletion occurs almost exclusively within the intestinal tract of simian immunodeficiency virus (SIV)-infected macaques within days of infection. Here we demonstrate (by three- and four-color flow cytometry) that this depletion is specific to a definable subset of CD4(+) T cells, namely, those having both a highly and/or acutely activated (CD69(+) CD38(+) HLA-DR(+)) and memory (CD45RA(-) Leu8(-)) phenotype. Moreover, we demonstrate that this subset of helper T cells is found primarily within the intestinal lamina propria. Viral tropism for this particular cell type (which has been previously suggested by various studies in vitro) could explain why profound CD4(+) T-cell depletion occurs in the intestine and not in peripheral lymphoid tissues in early SIV infection. Furthermore, we demonstrate that an acute loss of this specific subset of activated memory CD4(+) T cells may also be detected in peripheral blood and lymph nodes in early SIV infection. However, since this particular cell type is present in such small numbers in circulation, its loss does not significantly affect total CD4(+) T cell counts. This finding suggests that SIV and, presumably, human immunodeficiency virus specifically infect, replicate in, and eliminate definable subsets of CD4(+) T cells in vivo.  相似文献   

10.
The importance of antigen-specific CD4(+) helper T cells in virus infections is well recognized, but their possible role as direct mediators of virus clearance is less well characterized. Here we describe a recombinant Sendai virus strategy for probing the effector role(s) of CD4(+) T cells. Mice were vaccinated with DNA and vaccinia virus recombinant vectors encoding a secreted human immunodeficiency virus type 1 (HIV-1) envelope protein and then challenged with a Sendai virus carrying a homologous HIV-1 envelope gene. The primed mice showed (i) prompt homing of numerous envelope-primed CD4(+) T cell populations to the virus-infected lung, (ii) substantial production of gamma interferon, and interleukin-2 (IL-2), IL-4, and IL-5 in that site, and (iii) significantly reduced pulmonary viral load. The challenge experiments were repeated with immunoglobulin(-/-) microMT mice in the presence or absence of CD8(+) and/or CD4(+) T cells. These selectively immunodeficient mice were protected by primed CD4(+) T cells in the absence of antibody or CD8(+) T cells. Together, these results highlight the role of CD4(+) T cells as direct effectors in vivo and, because this protocol gives such a potent response, identify an outstanding experimental model for further dissecting CD4(+) T-cell-mediated immunity in the lung.  相似文献   

11.
In the host defense mechanism against feline immunodeficiency virus (FIV) infection, CD8(+) T cells specifically attack virus-infected cells and suppress the replication of the virus in a non-cytolytic manner by secreting soluble factors. In this study, we measured CD8(+) T cell anti-FIV activity in 30 FIV-infected cats. We investigated its relationship with the number of peripheral blood lymphocytes, particularly the CD4(+) T cell and CD8(+) T cell counts, and the relationship between anti-FIV activity and the number of T cells of CD8alpha(+)beta(lo) and CD8alpha(+)beta(-) phenotypes. A clearly significant correlation was observed between anti-FIV activity and the number of CD4(+) T cells. A weaker anti-FIV activity was associated with a greater decrease in the number of CD4(+) T cells. However, there was no significant correlation between anti-FIV activity and the number of B or CD8(+) T cells. Compared with SPF cats, FIV-infected cats had significantly higher CD8alpha(+)beta(lo) T cell and CD8alpha(+)beta(-) T cell counts, but, no significant correlation was observed between these cell counts and anti-FIV activity. This anti-FIV activity significantly correlated with plasma viremia, which was detected in cats with a weak anti-FIV activity. These results suggest that the anti-FIV activity of CD8(+) T cells plays an important role in plasma viremia and the maintenance of CD4(+) T cells in the body. It is unlikely that CD8alpha(+)beta(lo) or CD8alpha(+)beta(-) T cells appearing after FIV infection represent a phenotype of CD8(+) cells with anti-FIV activity.  相似文献   

12.
In response to pressure exerted by major histocompatibility complex (MHC) class I-mediated CD8(+) T cell control, human immunodeficiency virus (HIV) escape mutations often arise in immunodominant epitopes recognized by MHC class I alleles. While the current standard of care for HIV-infected patients is treatment with highly active antiretroviral therapy (HAART), suppression of viral replication in these patients is not absolute and latently infected cells persist as lifelong reservoirs. To determine whether HIV escape from MHC class I-restricted CD8(+) T cell control develops during HAART treatment and then enters latent reservoirs in the periphery and central nervous system (CNS), with the potential to emerge as replication-competent virus, we tracked the longitudinal development of the simian immunodeficiency virus (SIV) Gag escape mutation K165R in HAART-treated SIV-infected pigtailed macaques. Key findings of these studies included: (i) SIV Gag K165R escape mutations emerged in both plasma and cerebrospinal fluid (CSF) during the decaying phase of viremia after HAART initiation before suppression of viral replication, (ii) SIV K165R Gag escape mutations were archived in latent proviral DNA reservoirs, including the brain in animals receiving HAART that suppressed viral replication, and (iii) replication-competent SIV Gag K165R escape mutations were present in the resting CD4(+) T cell reservoir in HAART-treated SIV-infected macaques. Despite early administration of aggressive antiretroviral treatment, HIV immune escape from CD8(+) T cell control can still develop during the decaying phases of viremia and then persist in latent reservoirs, including the brain, with the potential to emerge if HAART therapy is interrupted.  相似文献   

13.
Differentiation and survival defects of human immunodeficiency virus (HIV)-specific CD8(+) T cells may contribute to the failure of HIV-specific CD8(+) T cells to control HIV replication. It is not known, however, whether simian immunodeficiency virus (SIV)-infected rhesus macaques show comparable defects in these virus-specific CD8(+) T cells or when such defects are established during infection. Peripheral blood cells from acutely and chronically infected rhesus macaques were stained ex vivo for memory subpopulations and examined by in vitro assays for apoptosis sensitivity. We show here that SIV-specific CD8(+) T cells from chronically SIV infected rhesus macaques show defects comparable to those observed in HIV infection, namely, a skewed CD45RA(-) CD62L(-) effector memory phenotype, reduced Bcl-2 levels, and increased levels of spontaneous and CD95-induced apoptosis of SIV-specific CD8(+) T cells. Longitudinal studies showed that the survival defects and phenotype are established early in the first few weeks of SIV infection. Most importantly, they appear to be antigen driven, since most probably the loss of epitope recognition due to viral escape results in the reversal of the phenotype and reduced apoptosis sensitivity, something we observed also for animals treated with antiretroviral therapy. These findings further support the use of SIV-infected rhesus macaques to investigate the phenotypic changes and apoptotic defects of HIV-specific CD8(+) T cells and indicate that such defects of HIV-specific CD8(+) T cells are the result of chronic antigen stimulation.  相似文献   

14.
The pathogenesis of AIDS virus infection in a nonhuman primate AIDS model was studied by comparing plasma viral loads, CD4(+) T-cell subpopulations in peripheral blood mononuclear cells, and simian immunodeficiency virus (SIV) infection in lymph nodes for rhesus macaques infected with a pathogenic molecularly cloned SIVmac239 strain and those infected with its nef deletion mutant (Deltanef). In agreement with many reports, whereas SIVmac239 infection induced AIDS and depletion of memory CD4(+) T cells in 2 to 3 years postinfection (p.i.), Deltanef infection did not induce any manifestation associated with AIDS up to 6.5 years p.i. To explore the difference in SIV infection in lymphoid tissues, we biopsied lymph nodes at 2, 8, 72, and 82 weeks p.i. and analyzed them by pathological techniques. Maximal numbers of SIV-infected cells (SIV Gag(+), Env(+), and RNA(+)) were detected at 2 weeks p.i. in both the SIVmac239-infected animals and the Deltanef-infected animals. In the SIVmac239-infected animals, most of the infected cells were localized in the T-cell-rich paracortex, whereas in the Deltanef-infected animals, most were localized in B-cell-rich follicles and in the border region between the paracortex and the follicles. Analyses by double staining of CD68(+) macrophages and SIV Gag(+) cells and by double staining of CD3(+) T cells and SIV Env(+) cells revealed that SIV-infected cells were identified as CD4(+) T cells in either the SIVmac239 or the Deltanef infection. Whereas the many functions of Nef protein were reported from in vitro studies, our finding of SIVmac239 replication in the T-cell-rich paracortex in the lymph nodes supports the reported roles of Nef protein in T-cell activation and enhancement of viral infectivity. Furthermore, the abundance of SIVmac239 infection and the paucity of Deltanef infection in the T-cell-rich paracortex accounted for the differences in viral replication and pathogenicity between SIVmac239 and the Deltanef mutant. Thus, our in vivo study indicated that the nef gene enhances SIV replication by robust productive infection in memory CD4(+) T cells in the T-cell-rich region in lymphoid tissues.  相似文献   

15.
Foot-and-mouth disease virus (FMDV) is the causative agent of a highly contagious vesicular disease of cloven-hoofed animals. In the present study we use FMDV serotype C infection of swine to determine, by analytical techniques, the direct ex vivo visualization of virus-infected immune cells during the first 17 days of infection. We report, for the first time, that FMDV C-S8c1 can infect T and B cells at short periods of time postinoculation, corresponding with the peak of the viremia. There is a significant lymphopenia that involves CD3(+) CD4(-) CD8(+/-), CD3(+) CD4(-) CD8(+)Tc, and CD3(+) CD4(+) CD8(+) memory Th but not CD3(+) CD4(+) CD8(-) na?ve Th lymphocytes. In addition, a profound depletion of the vast majority of peripheral T cells in lymph nodes and spleen is observed. This selective depletion of T cells is not due mainly to in situ death via apoptosis as visualized by the terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) technique. Thus, early infection of T cells by FMDV may be the main cause of the observed T-cell depletion. Importantly, this lack of T cells is reflected in a reduced response to mitogen activation, which in many cases is totally eliminated. These data suggest a mechanism by which the virus causes a transient immunosuppression, subvert the immune systems, and spreads. These results have important implications for our understanding of early events in the development of a robust immune response against FMDV.  相似文献   

16.
The AIDS-like disease in rhesus monkeys induced by the simian immunodeficiency virus (SIV) has been used as a model to explore the nature of the T lymphocyte response after infection with viruses of the human immunodeficiency virus family. Activated CD8+ lymphocytes are present in increased numbers in the paracortex of lymph nodes of SIV-infected rhesus monkeys with a lymphadenopathy syndrome. We demonstrate that SIV is more readily isolated from CD8+ lymphocyte-depleted PBL of SIV-infected animals than from their unfractionated PBL. Rather than reflecting the fact that the CD8+ lymphocyte-depleted cell populations are simply enriched for CD4+ lymphocytes, this indicates that CD8+ cells themselves are critical in this regulatory interaction. In fact, CD8+ lymphocytes from SIV-infected but not uninfected rhesus monkeys can block SIV replication in vitro in PBL populations. A T lymphocyte population that blocks replication of viruses of the HIV family may contribute to containing the progression of AIDS.  相似文献   

17.
The thymus is responsible for de novo production of CD4(+) and CD8(+) T cells and therefore is essential for T-cell renewal. The goal of this study was to assess the impact of simian immunodeficiency virus (SIV) infection on the production of T cells by the thymus. Levels of recent thymic emigrants within the peripheral blood were assessed through quantification of macaque T-cell receptor excision circles (TREC). Comparison of SIV-infected macaques (n = 15) to uninfected macaques (n = 23) revealed stable or increased TREC levels at 20 to 34 weeks postinfection. Further assessment of SIV-infected macaques (n = 4) determined that TREC levels decreased between 24 and 48 weeks postinfection. Through the assessment of longitudinal time points in three additional SIVmac239-infected macaques, the SIV infection was divided into two distinct phases. During phase 1 (16 to 30 weeks), TREC levels remained stable or increased within both the CD4 and CD8 T-cell populations. During phase 2 (after 16 to 30 weeks), TREC levels declined in both T-cell populations. As has been described for human immunodeficiency virus (HIV)-infected patients, this decline in TREC levels did at times correlate with an increased level of T-cell proliferation (Ki67(+) cells). However, not all TREC decreases could be attributed to increased T-cell proliferation. Further evidence for thymic dysfunction was observed directly in a SIVmac239-infected macaque that succumbed to simian AIDS at 65 weeks postinfection. The thymus of this macaque contained an increased number of memory/effector CD8(+) T cells and an increased level of apoptotic cells. In summary, reduced levels of TREC can be observed beginning at 16 to 30 weeks post-SIV infection and correlate with changes indicative of dysfunction within the thymic tissue. SIV infection of macaques will be a useful model system to elucidate the mechanisms responsible for the thymic dysfunction observed in HIV-infected patients.  相似文献   

18.
Functional impairment of virus-specific memory CD8(+) T lymphocytes has been associated with clinical disease progression following HIV, SIV, and simian human immunodeficiency virus infection. These lymphocytes have a reduced capacity to produce antiviral cytokines and mediators involved in the lysis of virally infected cells. In the present study, we used polychromatic flow cytometry to assess the frequency and functional capacity of central memory (CD28(+)CD95(+)) and effector memory (CD28(-)CD95(+)) subpopulations of Gag-specific CD8(+) T cells in SIV/simian human immunodeficiency virus-infected rhesus monkeys. The aim of this study was to determine whether Ag-specific, memory CD8(+) T cell function could be preserved in infected monkeys that had been immunized before infection with a vaccine regimen consisting of a plasmid DNA prime followed by a recombinant viral vector boost. We observed that vaccination was associated with the preservation of Gag-specific central memory CD8(+) T cells that were functionally capable of producing IFN-gamma, and effector memory CD8(+) T cells that were capable of producing granzyme B following viral Ag exposure.  相似文献   

19.
Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) plays a crucial role in viral replication and pathogenesis by inducing cell cycle arrest, apoptosis, translocation of preintegration complex, potentiation of glucocorticoid action, impairment of dendritic cell (DC) maturation, and T-cell activation. Recent studies involving the direct effects of Vpr on DCs and T cells indicated that HIV-1 containing Vpr selectively impairs phenotypic maturation, cytokine network, and antigen presentation in DCs and dysregulates costimulatory molecules and cytokine production in T cells. Here, we have further investigated the indirect effect of HIV-1 Vpr(+) virus-infected DCs on the bystander CD8(+) T-cell population. Our results indicate that HIV-1 Vpr(+) virus-infected DCs dysregulate CD8(+) T-cell proliferation and induce apoptosis. Vpr-containing virus-infected DC-mediated CD8(+) T-cell killing occurred in part through enhanced tumor necrosis factor alpha production by infected DCs and subsequent induction of death receptor signaling and activation of the caspase 8-dependent pathway in CD8(+) T cells. Collectively, these results provide evidence that Vpr could be one of the important contributors to the host immune escape by HIV-1 through its ability to dysregulate both directly and indirectly the DC biology and T-cell functions.  相似文献   

20.
Vaccinia virus-specific CD8+ cytotoxic T lymphocytes in humans.   总被引:3,自引:0,他引:3       下载免费PDF全文
Stimulation of human vaccinia virus immune peripheral blood mononuclear cells in vitro from vaccinia virus-immune donors with live vaccinia virus-infected autologous cells generated vaccinia virus-specific cytotoxic T lymphocytes (CTL) capable of lysing vaccinia virus-infected cells. We generated vaccinia virus-specific CD8+ clones and CD4+ CTL lines by limiting dilution from two donors by using peripheral blood mononuclear cells obtained 2 months or 4 years postrevaccination with vaccinia virus. These results demonstrate that vaccinia virus-specific CTL are generated as a result of immunization of humans with vaccinia virus and that both CD8(+)- and CD4(+)-specific T cells are maintained as memory cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号