首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioactive lysophospholipids (LPLs) are released by blood cells and can modulate many cellular activities such as angiogenesis and cell survival. In this study, the effects of sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA) on excitability and exocytosis in bovine chromaffin cells were investigated using the whole-cell configuration of the patch-clamp. Voltage-gated Ca(2+) current was inhibited by S1P and LPA pre-treatment in a concentration-dependent manner with IC(50)s of 0.46 and 0.79 mumol/L, respectively. Inhibition was mostly reversible upon washout and prevented by suramin, an inhibitor of G-protein signaling. Na(+) current was inhibited by S1P, but not by LPA. However, recovery of Na(+) channels from inactivation was slowed by both LPLs. The outward K(+) current was also significantly reduced by both LPLs. Chromaffin cells fired repetitive action potentials in response to minimal injections of depolarizing current. Repetitive activity was dramatically reduced by LPLs. Consistent with the reduction in Ca(2+) current, exocytosis elicited by a train of depolarizations and the ensuing endocytosis were both inhibited by LPL pre-treatments. These data demonstrate the interaction between immune and endocrine systems mediated by the inhibitory effects of LPLs on the excitability of adrenal chromaffin cells.  相似文献   

2.
Calcium (Ca(2+))-dependent endocytosis has been linked to preferential Ca(2+) entry through the L-type (α(1D), Ca(V)1.3) of voltage-dependent Ca(2+) channels (VDCCs). Considering that the Ca(2+)-dependent exocytotic release of neurotransmitters is mostly triggered by Ca(2+) entry through N-(α(1B), Ca(V)2.2) or PQ-VDCCs (α(1A), Ca(V)2.1) and that exocytosis and endocytosis are coupled, the supposition that the different channel subtypes are specialized to control different cell functions is attractive. Here we have explored this hypothesis in primary cultures of bovine adrenal chromaffin cells where PQ channels account for 50% of Ca(2+) current (I(Ca)), 30% for N channels, and 20% for L channels. We used patch-clamp and fluorescence techniques to measure the exo-endocytotic responses triggered by long depolarizing stimuli, in 1, 2, or 10 mM concentrations of extracellular Ca(2+) ([Ca(2+)](e)). Exo-endocytotic responses were little affected by ω-conotoxin GVIA (N channel blocker), whereas ω-agatoxin IVA (PQ channel blocker) caused 80% blockade of exocytosis as well as endocytosis. In contrast, nifedipine (L channel blocker) only caused 20% inhibition of exocytosis but as much as 90% inhibition of endocytosis. Conversely, FPL67146 (an activator of L VDCCs) notably augmented endocytosis. Photoreleased caged Ca(2+) caused substantially smaller endocytotic responses compared with those produced by K(+) depolarization. Using fluorescence antibodies, no colocalization between L, N, or PQ channels with clathrin was found; a 20-30% colocalization was found between dynamin and all three channel antibodies. This is incompatible with the view that L channels are coupled to the endocytotic machine. Data rather support a mechanism implying the different inactivation rates of L (slow-inactivating) and N/PQ channels (fast-inactivating). Thus a slow but more sustained Ca(2+) entry through L channels could be a requirement to trigger endocytosis efficiently, at least in bovine chromaffin cells.  相似文献   

3.
Marengo FD 《Cell calcium》2005,38(2):87-99
The relationship between the localized Ca(2+) concentration and depolarization-induced exocytosis was studied in patch-clamped adrenal chromaffin cells using pulsed-laser Ca(2+) imaging and membrane capacitance measurements. Short depolarizing voltage steps induced Ca(2+) gradients and small "synchronous" increases in capacitance during the pulses. Longer pulses increased the capacitance changes, which saturated at 16 fF, suggesting the presence of a small immediately releasable pool of fusion-ready vesicles. A Hill plot of the capacitance changes versus the estimated Ca(2+) concentration in a thin (100 nm) shell beneath the membrane gave n = 2.3 and K(d) = 1.4 microM. Repetitive stimulation elicited a more complex pattern of exocytosis: early pulses induced synchronous capacitance increases, but after five or more pulses there was facilitation of the synchronous responses and gradual increases in capacitance continued between pulses (asynchronous exocytosis) as the steep submembrane Ca(2+) gradients collapsed. Raising the pipette Ca(2+) concentration led to early facilitation of the synchronous response and early appearance of asynchronous exocytosis. We used this data to develop a kinetic model of depolarization-induced exocytosis, where Ca(2+)-dependent fusion of vesicles occurs from a small immediately releasable pool with an affinity of 1-2 microM and vesicles are mobilized to this pool in a Ca(2+)-dependent manner.  相似文献   

4.
Beutner D  Voets T  Neher E  Moser T 《Neuron》2001,29(3):681-690
Release of neurotransmitter at the inner hair cell (IHC) afferent synapse is a fundamental step in translating sound into auditory nerve excitation. To study the Ca2+ dependence of the underlying vesicle fusion and subsequent endocytosis, we combined Ca2+ uncaging with membrane capacitance measurements in mouse IHCs. Rapid elevations in [Ca2+]i above 8 microM caused a biphasic capacitance increase corresponding to the fusion of approximately 40,000 vesicles. The kinetics of exocytosis displayed a fifth-order Ca2+ dependence reaching maximal rates of >3 x 10(7) vesicle/s. Exocytosis was always followed by slow, compensatory endocytosis (tau congruent with 15 s). Higher [Ca2+]i increased the contribution of a faster mode of endocytosis with a Ca2+ independent time constant of approximately 300 ms. These properties provide for rapid and sustained transmitter release from this large presynaptic terminal.  相似文献   

5.
Dynamic changes in chromaffin cell cytoskeleton as prelude to exocytosis   总被引:2,自引:0,他引:2  
Earlier work by us as well as others has demonstrated that filamentous actin is mainly localized in the cortical surface of chromaffin cell. This F-actin network acts as a barrier to the chromaffin granules, impeding their contact with the plasma membrane. Chromaffin granules contain α-actinin, an anchorage protein that mediates F-actin association with these vesicles. Consequently, chromaffin granules crosslink and stabilize F-actin networks. Stimulation of chromaffin cell produces disassembly of F-actin and removal of the barrier. This interpretation is based on: (1) Cytochemical experiments with rhodamine-labeled phalloidin indicated that in resting chromaffin cells, the F-actin network is visualized as a strong cortical fluorescent ring; (2) Nicotinic receptor stimulation produced fragmentation of this fluorescent ring, leaving chromaffin cell cortical areas devoid of fluorescence; and (3) These changes are accompanied by a decrease in F-actin, a concomitant increase in G-actin, and a decrease in the F-actin associated with the chromaffin cell cytoskeleton (DNAse I assay). We also have demonstrated the presence in chromaffin cells of gelsolin and scinderin, two Ca2+-dependent actin filament-severing proteins, and suggested that chromaffin cell stimulation activates scinderin with the consequent disruption of F-actin networks. Scinderin, a protein recently isolated in our laboratory, is restricted to secretory cells and is present mainly in the cortical chromaffin cell cytoplasm. Scinderin, which is structurally different from gelsolin (different pIs, amino acid composition, peptide maps, and so on), decreases the viscosity of actin gels as a result of its F-actin-severing properties, as demonstrated by electron microscopy. Stimulation of chromaffin cells either by nicotine (10 μM) or high K+ (56 mM) produces a redistribution of subplasmalemmal scinderin and actin disassembly, which preceded exocytosis. The redistribution of scinderin and exocytosis is Ca2+-dependent and is not mediated by muscarinic receptors. Furthermore, our cytochemical experiments demonstrate that chromaffin cell stimulation produces a concomitant and similar redistribution of scinderin (fluorescein-labeled antibody) and F-actin (rhodamine phalloidin fluorescence), suggesting a functional interaction between these two proteins. Stimulation-induced redistribution of scinderin and F-actin disassembly would produce subplasmalemmal areas of decreased cytoplasmic viscosity and increased mobility for chromaffin granules. Exocytosis sites, evaluated by antidopamine-β-hydroxylase (anti-DβH) surface staining, are preferentially localized in plasma membrane areas devoid of F-actin.  相似文献   

6.
Experimental analysis of the mechanisms of exocytosis and endocytosis has hitherto been hampered by the inaccessibility of the intracellular sites at which they are controlled. We have recently developed a technique that overcomes this problem. Cells are subjected to intense electric fields of brief duration; this renders the plasma membrane permeable without impairing its ability to participate in exocytosis and endocytosis. Working with 'leaky' bovine adrenal medullary cells, catecholamine release has a rather specific requirement for Mg-ATP, is activated by micromolar concentrations of ionized Ca and can be inhibited by Mg, detergents, trifluoperazine, high osmotic pressure and various anions. The mechanism of activation by Ca is discussed in some detail.  相似文献   

7.
Cultured bovine adrenal medullary chromaffin cells were stimulated to secrete catecholamines by addition of veratridine or nicotine. The formation of an exocytotic pit exposes a major secretory granule membrane antigen, the enzyme dopamine beta-hydroxylase, to the external medium. By including antiserum to this enzyme in the medium, we were able to visualize sites of exocytosis by decoration of bound antibody using a fluorescent second antibody. Internalization of this antibody- antigen complex was then followed in chase experiments: approximately half the surface complex was internalized in 15-30 min. In other experiments, secretion was triggered in the absence of antiserum, and surface enzyme was revealed by binding antibodies at various times after secretion had been halted by an antagonist. Surface patches of antigen remained discrete from the bulk of the plasma membrane for at least 30 min, although a substantial proportion of the antigen was internalized within this time. Cell surface concanavalin A receptors were internalized at a roughly similar rate, suggesting that mechanisms may be similar. After internalization, chromaffin granule membranes fused to larger structures, possibly lysosomes, and were transported over a few hours to the perinuclear region of the cell.  相似文献   

8.
The intracellular requirements for membrane recapture in permeabilized chromaffin cells were compared to the requirements for exocytosis from the same cells.In permeabilized bovine chromaffin cells, calcium-driven exocytosis also triggers, with a short delay, uptake of extracellular horseradish peroxidase (HRP). This internalized HRP remains compartmentalized within the cell and migrates to a low density band on a Percoll gradient which is distinct from the heavier chromaffin granules.The amount of horseradish peroxidase internalized is similar in intact and leaky cells and is approximately equivalent to the volumes secreted. Endocytosis in both preparations is blocked by botulinum toxin, operates in a collapsed membrane potential, and is inhibited by low temperature. In permeabilized cells, exocytosis and coupled endocytosis are activated by the same concentrations of Ca2+ and MgATP. Although secretion requires Ca2+ and MgATP, once exocytosis has occurred the subsequent endocytosis can proceed in the virtual absence of Ca2+ or MgATP, and is largely unaffected by a variety of nucleotide triphosphates (including nonhydrolyzable analogues), and cyclic nucleotides.These data suggest that endocytosis can proceed, once exocytosis has been triggered, under conditions that are quite different from those necessary to support exocytosis, and that the specific requirements for Ca2+ and MgATP in secretion are for the exocytotic limb of the secretory cycle rather than for the associated endocytotic pathway.We are grateful to Mr. John Gibbs for excellent technical assistance, and to the Medical Research Council (UK) for financial support.  相似文献   

9.
In the hydrozoan Phialidium gregarium, the constitutive calcium influx of cleavage stage embryos in sea water is 1.96 +/- 0.75 x 10(-15) moles/embryo/minute. Treating embryos with 227 mM KCl in seawater briefly increases the calcium influx more than 100-fold, to 3.9 x 10(-13) mol/embryo/min. About 62% of the KCl-induced calcium influx is due to calcium flowing through voltage-sensitive calcium channels. This causes a marked intracellular calcium transient and secretion of intracellular vesicles. The other component (approximately 38%) of the calcium influx occurs via fluid phase endocytosis of the extracellular medium (detected using extracellular 3H-sucrose). KCl-treatment of 45Ca loaded embryos induces a 45Ca efflux which can reach peak fractional rates of 0.98/min, during which 55-75% (mean 66%) of the total 45Ca is lost. The KCl-induced calcium efflux is due, in part, to secretion because loaded 3H-sucrose is effluxed simultaneously. This pathway may be important for the calcium efflux necessary for long-term calcium homeostasis in cells.  相似文献   

10.
11.
Neurosecretory cells including chromaffin cells possess a mesh of filamentous actin underneath the plasma membrane. We have proposed that the F-actin network acts as a barrier to the secretory vesicles blocking their access to exocytotic sites at the plasma membrane. Disassembly of cortical F-actin in chromaffin cells in response to stimulation is thought to allow the free movement of secretory vesicles to exocytotic sites. Moreover, experiments by us using morphometric analysis of resting and stimulated chromaffin cells together with membrane capacitance measurements have shown that cortical F-actin controls the traffic of vesicles from the vesicle reserve compartment to the release-ready vesicle compartment. The dynamics of the cortical F-actin is controlled by two pathways: A) stimulation-induced Ca(2+) entry and scinderin activation; and B) protein kinase C (PKC) activation and MARCKS (myristoylated alanine-rich C kinase substrate) phosphorylation. When chromaffin cells are stimulated through nicotinic receptors, cortical F-actin disassembly is mainly through the intervention of pathway A, since in the presence of PKC inhibitors, F-actin disassembly in response to cholinergic stimulation is only blocked by 20%. Pathway A involves the activation of scinderin by Ca(2+) with a consequent F-actin severing. Pathway B is fully activated by phorbol esters and in this case PKC blockers inhibit by 100% the disruption of cortical F-actin. This pathway operates through MARCKS. A peptide with amino acid sequence corresponding to the phosphorylation site domain of MARCKS, which also corresponds to its actin binding site, blocks PMA potentiation of Ca(2+)-induced catecholamine release. The results suggest that under physiological conditions (i.e., nicotinic receptor stimulation) pathway A is the principal mechanism for the control of cortical F-actin dynamic changes.  相似文献   

12.
Phagocytosis is used by macrophages, dendritic cells and neutrophils to capture and destroy pathogens and particulate antigens. Although localized assembly of actin filaments is the driving force for particle internalization, exocytosis of intracellular compartments, and in particular endocytic compartments, has been shown recently to be required for the early steps of phagosome formation. Here we report on the different compartments undergoing exocytosis during phagocytosis, with a special focus on late endosomes. We then compare this process with secretion from lysosomes or lysosome-related organelles in specialized cells. Finally, we discuss how some of the molecular mechanisms responsible for lysosome-related organelle secretion could also be implicated in phagosome formation.  相似文献   

13.
Chromaffin granule exocytosis differs in many physiological respects from neuronal synaptic vesicle exocytosis, which has led to the assumption that the two processes occur by distinct mechanisms. While different mechanisms are certainly in operation for the biogenesis of granules and synaptic vesicles, it is now becoming clear that similar mechanisms are used by both beyond this stage. The similarities extend to various aspects of regulated exocytosis, including regulation of the number of vesicles released in response to cell stimulation. Most strikingly, it now appears that the same proteins mediate the docking and fusion of both chromaffin granules and synaptic vesicles, and that homologues of these proteins act similarly in constitutive membrane traffic throughout evolution.  相似文献   

14.
We characterized the ionic currents underlying the cellular excitability and the Ca2+‐channel subtypes involved in action potential (AP) firing of rat adrenal chromaffin cells (RCCs) preserved in their natural environment, the adrenal gland slices, through the perforated patch‐clamp recording technique. RCCs prepared from adrenal slices exhibit a resting potential of ?54 mV, firing spontaneous APs (2–3 spikes/s) generated by the opening of Na+ and Ca2+‐channels, and terminated by the activation of voltage and Ca2+‐activated K+‐channels (BK). Ca2+ influx via L‐type Ca2+‐channels is involved in reaching threshold potential for AP firing, and is responsible for activation of BK‐channels contributing to AP‐repolarization and afterhyperpolarization, whereas P/Q‐type Ca2+‐channels are involved only in the repolarization phase. BK‐channels carry total outward current during AP‐repolarization. Blockade of L‐type Ca2+‐channels reduces BK‐current ~60%, whereas blockade of N‐ or P/Q‐type produces little effect. This study demonstrates that Ca2+ influx through L‐type Ca2+‐channels plays a key role in modulating the threshold potential from RCCs in situ.

  相似文献   


15.
The MgATP dependency of secretion was investigated in digitonin-permeabilized adrenal chromaffin cells. Shortly after permeabilization there is a component of Ca2+-dependent secretion that occurs in the absence of MgATP in the medium. This secretion occurs from cells which are permeable to Ca2+/[ethylene-bis(oxyethylenenitrilo)]tetraacetic acid buffers, to nucleotides, and to proteins. It is prevented by treatment of cells with metabolic inhibitors to reduce cellular ATP prior to permeabilization. The rate of MgATP-independent secretion is rapid and terminates by approximately 2 min after introduction of Ca2+. MgATP-independent secretion is labile and is lost unless Ca2+ is introduced within 8 min of permeabilization. MgATP-dependent secretion occurs at a slower rate than MgATP-independent secretion and continues at a constant rate for 12 min. Preincubation of permeabilized cells with MgATP enhances Ca2+-dependent secretion during a subsequent incubation in the absence of MgATP. Similar MgATP sensitivities are observed when MgATP is present only prior to or only during stimulation with Ca2+ with half-maximal stimulation occurring at 0.4-0.5 and 0.6 mM MgATP, respectively. The data indicate that intact cells are primed by intracellular ATP so that immediately upon permeabilization, there is a component of secretion which is independent of medium MgATP. MgATP partially maintains the primed state after permeabilization by acting before Ca2+ in the secretory pathway.  相似文献   

16.
高中生物必修本第1册第2章在讲到细胞膜的主要功能时,以小字的形式提到细胞的内吞作用和外排作用,表述较简单,读者不甚理解。其实这也是活细胞进行新陈代谢作用,不断地与外界环境交换物质,物质通过细胞膜进出细胞的方式之一。离子和小分子物质进出  相似文献   

17.
Profilins are actin binding proteins essential for regulating cytoskeletal dynamics, however, their function in the mammalian nervous system is unknown. Here, we provide evidence that in mouse brain profilin1 and profilin2 have distinct roles in regulating synaptic actin polymerization with profilin2 preferring a WAVE-complex-mediated pathway. Mice lacking profilin2 show a block in synaptic actin polymerization in response to depolarization, which is accompanied by increased synaptic excitability of glutamatergic neurons due to higher vesicle exocytosis. These alterations in neurotransmitter release correlate with a hyperactivation of the striatum and enhanced novelty-seeking behavior in profilin2 mutant mice. Our results highlight a novel, profilin2-dependent pathway, regulating synaptic physiology, neuronal excitability, and complex behavior.  相似文献   

18.
Tian CY  Zhang CL  Gu F  Ma YJ 《生理学报》2012,64(4):489-494
Intersectin is an evolutionarily conserved multifunctional adaptor protein with multifunctional domains. These domains interact with components of the endocytic and exocytic pathways, such as the clathrin mediating synaptic vesicle recycling, the protein related to endocytosis via caveolae, the with-no-lysine kinases related to the regulation of renal outer medullar potassium, and the Cdc42 mediating exocytic pathway. Recently, the understanding of intersectin function in the pathogenesis of endocrine tumor and many neurodegenerative diseases such as Down syndrome, Alzheimer disease has been deepened. This article reviewed the structure and roles in endocytosis/exocytosis and diseases of intersectin.  相似文献   

19.
A significant number of exocytosis events recorded with amperometry demonstrate a prespike feature termed a "foot" and this foot has been correlated with messengers released via a transitory fusion pore before full exocytosis. We have compared amperometric spikes with a foot with spikes without a foot at chromaffin cells and found that the probability of detecting a distinct foot event is correlated to the amount of catecholamine released. The mean charge of the spikes with a foot was found to be twice that of the spikes without a foot, and the frequency of spikes displaying a foot was zero for small spikes increasing to approximately 50% for large spikes. It is hypothesized that in chromaffin cells, where the dense core is believed to nearly fill the vesicle, the expanding core is a controlling factor in opening the fusion pore, that prefusion of two smaller vesicles leads to excess membrane, and that this slows pore expansion leading to an increased observation of events with a foot. Clearly, the physicochemical properties of vesicles are key factors in the control of the dynamics of release through the fusion pore and the high and variable frequency of this release makes it highly significant.  相似文献   

20.
Synaptic vesicles are made locally in the nerve terminal during recycling of membrane. Synaptic vesicle proteins must be sorted and concentrated on the plasma membrane, packaged into a budding vesicle of precise size and cut away from the synaptic surface. Adaptors, scaffolds, BAR-domain and ENTH-domain proteins all must be coordinated to carry out this sequence of events prior to the action of dynamin. Details of how this is orchestrated at nerve terminals are just beginning to emerge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号