首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b(5), and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment.  相似文献   

2.
The search for a nitric oxide synthase (NOS) sequence in the plant kingdom yielded two sequences from the recently published genomes of two green algae species of the Ostreococcus genus, O. tauri and O. lucimarinus. In this study, we characterized the sequence, protein structure, phylogeny, biochemistry, and expression of NOS from O. tauri. The amino acid sequence of O. tauri NOS was found to be 45% similar to that of human NOS. Folding assignment methods showed that O. tauri NOS can fold as the human endothelial NOS isoform. Phylogenetic analysis revealed that O. tauri NOS clusters together with putative NOS sequences of a Synechoccocus sp strain and Physarum polycephalum. This cluster appears as an outgroup of NOS representatives from metazoa. Purified recombinant O. tauri NOS has a K(m) for the substrate l-Arg of 12 ± 5 μM. Escherichia coli cells expressing recombinant O. tauri NOS have increased levels of NO and cell viability. O. tauri cultures in the exponential growth phase produce 3-fold more NOS-dependent NO than do those in the stationary phase. In O. tauri, NO production increases in high intensity light irradiation and upon addition of l-Arg, suggesting a link between NOS activity and microalgal physiology.  相似文献   

3.
The basal position of the Mamiellales (Prasinophyceae) within the green lineage makes these unicellular organisms key to elucidating early stages in the evolution of chlorophyll a/b-binding light-harvesting complexes (LHCs). Here, we unveil the complete and unexpected diversity of Lhc proteins in Ostreococcus tauri, a member of the Mamiellales order, based on results from complete genome sequencing. Like Mantoniella squamata, O. tauri possesses a number of genes encoding an unusual prasinophyte-specific Lhc protein type herein designated "Lhcp". Biochemical characterization of the complexes revealed that these polypeptides, which bind chlorophylls a, b, and a chlorophyll c-like pigment (Mg-2,4-divinyl-phaeoporphyrin a5 monomethyl ester) as well as a number of unusual carotenoids, are likely predominant. They are retrieved to some extent in both reaction center I (RCI)- and RCII-enriched fractions, suggesting a possible association to both photosystems. However, in sharp contrast to previous reports on LHCs of M. squamata, O. tauri also possesses other LHC subpopulations, including LHCI proteins (encoded by five distinct Lhca genes) and the minor LHCII polypeptides, CP26 and CP29. Using an antibody against plant Lhca2, we unambiguously show that LHCI proteins are present not only in O. tauri, in which they are likely associated to RCI, but also in other Mamiellales, including M. squamata. With the exception of Lhcp genes, all the identified Lhc genes are present in single copy only. Overall, the discovery of LHCI proteins in these prasinophytes, combined with the lack of the major LHCII polypeptides found in higher plants or other green algae, supports the hypothesis that the latter proteins appeared subsequent to LHCI proteins. The major LHC of prasinophytes might have arisen prior to the LHCII of other chlorophyll a/b-containing organisms, possibly by divergence of a LHCI gene precursor. However, the discovery in O. tauri of CP26-like proteins, phylogenetically placed at the base of the major LHCII protein clades, yields new insight to the origin of these antenna proteins, which have evolved separately in higher plants and green algae. Its diverse but numerically limited suite of Lhc genes renders O. tauri an exceptional model system for future research on the evolution and function of LHC components.  相似文献   

4.
Piganeau G  Moreau H 《Gene》2007,406(1-2):184-190
The Sargasso Sea water shotgun sequencing unveiled an unprecedented glimpse of marine prokaryotic diversity and gene content. The sequence data was gathered from 0.8 microm filtered surface water extracts, and revealed picoeukaryotic (cell size<2 microm) sequences alongside the prokaryotic data. We used the available genome sequence of the picoeukaryote Ostreococcus tauri (Prasinophyceae, Chlorophyta) as a benchmark for the eukaryotic sequence content of the Sargasso Sea metagenome. Sequence data from at least two new Ostreococcus strains were identified and analyzed, and showed a bias towards higher coverage of the AT-rich organellar genomes. The Ostreococcus nuclear sequence data retrieved from the Sargasso metagenome is divided onto 731 scaffolds of average size 3917 bp, and covers 23% of the complete nuclear genome and 14% of the total number of protein coding genes in O. tauri. We used this environmental Ostreococcus sequence data to estimate the level of constraint on intronic and intergenic sequences in this compact genome.  相似文献   

5.
Phylogenetic analyses of 18S rDNA sequences from 25 prasinophytes, including 10 coccoid isolates, reveals that coccoid organisms are found in at least three prasinophyte lineages. The coccoid Ostreococcus tauri is included in the Mamiellales lineage and P ycnococcus provasolii is allied with the flagellate P seudoscourfieldia marina. A previously undescribed prasinophyte lineage is comprised of the coccoid Prasinococcus cf. capsulatus (CCMP 1407) and other isolates tentatively identified as Prasinococcus sp. (CCMP 1202, CCMP 1614, and CCMP 1194), as well as three unnamed coccoids (CCMP 1193, CCMP 1413, and CCMP 1220). No flagellate organisms are known from this lineage. Organisms of this new lineage share some characteristics of both the Pycnococcaceae and the Mamiellales, although relationships among these separate lineages were not supported by bootstrap analyses. An additional unnamed coccoid isolate (CCMP 1205) is separate from all major prasinophyte lineages. The analyses did not resolve the relationships among the major prasinophyte lineages, although they support previous conclusions that the Prasinophyceae are not monophyletic.  相似文献   

6.
Ostreococcus tauri Courties et Chrétiennot-Dinet is the smallest described autotrophic eukaryote dominating the phytoplanktonic assemblage of the marine Mediterranean Thau lagoon (France). Its taxonomic position was partly elucidated from ultrastructure and high-pressure liquid chromatography (HLPC) pigment analysis. The sequence analysis of the 18S rDNA gene of O. tauri measured here is available in EMBL Nucleotide Sequence Database (accession number: Y15814) and allowed to clarify its phylogenetic position. O. tauri belongs to the Prasinophyceae and appears very close to Mantoniella, a typical scaly Prasinophyceae, morphologically very different from the naked and coccoid Ostreococcus. An electrophoretic analysis of O. tauri shows that the nucleus contains 10.20 mbp. This small genome, fragmented into 14 chromosomes ranging in size from 300 to 1500 kbp, confirms the minimalist characteristics of Ostreococcus tauri.  相似文献   

7.
Ostreococcus tauri virus (OtV-1) is a large double-stranded DNA virus and a prospective member of the family Phycodnaviridae , genus Prasinovirus . OtV-1 infects the unicellular marine green alga O. tauri , the smallest known free-living eukaryote. Here we present the 191 761 base pair genome sequence of OtV-1, which has 232 putative protein-encoding and 4 tRNA-encoding genes. Approximately 31% of the viral gene products exhibit a similarity to proteins of known functions in public databases. These include a variety of unexpected genes, for example, a PhoH-like protein, a N -myristoyltransferase, a 3-dehydroquinate synthase, a number of glycosyltransferases and methyltransferases, a prolyl 4-hydroxylase, 6-phosphofructokinase and a total of 8 capsid proteins. A total of 11 predicted genes share homology with genes found in the Ostreococcus host genome. In addition, an intein was identified in the DNA polymerase gene of OtV-1. This is the first report of an intein in the genome of a virus that infects O. tauri. Fifteen core genes common to nuclear-cytoplasmic large dsDNA virus (NCLDV) genomes were identified in the OtV-1 genome. This new sequence data may help to redefine the classification of the core genes of these viruses and shed new light on their evolutionary history.  相似文献   

8.
The green picoalga Ostreococcus is emerging as a simple plant model organism, and two species, O. lucimarinus and O. tauri, have now been sequenced and annotated manually. To evaluate the completeness of the metabolic annotation of both species, metabolic networks of O. lucimarinus and O. tauri were reconstructed from the KEGG database, thermodynamically constrained, elementally balanced, and functionally evaluated. The draft networks contained extensive gaps and, in the case of O. tauri, no biomass components could be produced due to an incomplete Calvin cycle. To find and remove gaps from the networks, an extensive reference biochemical reaction database was assembled using a stepwise approach that minimized the inclusion of microbial reactions. Gaps were then removed from both Ostreococcus networks using two existing gap-filling methodologies. In the first method, a bottom-up approach, a minimal list of reactions was added to each model to enable the production of all metabolites included in our biomass equation. In the second method, a top-down approach, all reactions in the reference database were added to the target networks and subsequently trimmed away based on the sequence alignment scores of identified orthologues. Because current gap-filling methods do not produce unique solutions, a quality metric that includes a weighting for phylogenetic distance and sequence similarity was developed to distinguish between gap-filling results automatically. The draft O. lucimarinus and O. tauri networks required the addition of 56 and 70 reactions, respectively, in order to produce the same biomass precursor metabolites that were produced by our plant reference database.  相似文献   

9.
Ostreococcus tauri is a unicellular green alga and amongst the smallest and simplest free-living eukaryotes. The O. tauri genome sequence was determined in 2006. Molecular, physiological and taxonomic data that has been generated since then highlight its potential as a simple model species for algae and plants. However, its proteome remains largely unexplored. This paper describes the global proteomic study of O. tauri, using mass spectrometry-based approaches: phosphopeptide enrichment, cellular fractionation, label-free quantification and (15)N metabolic labeling. The O. tauri proteome was analyzed under the following conditions: sampling at different times during the circadian cycle, after 24h of illumination, after 24h of darkness and under various nitrogen source supply levels. Cell cycle related proteins such as dynamin and kinesin were significantly up-regulated during the daylight-to-darkness transition. This is reflected by their higher intensity at ZT13 and this transition phase coincides with the end of mitosis. Proteins involved in several metabolic mechanisms were found to be up-regulated under low nitrogen conditions, including carbon storage pathways, glycolysis, phosphate transport, and the synthesis of inorganic polyphosphates. Ostreococcus tauri responds to low nitrogen conditions by reducing its nitrogen assimilation machinery which suggests an atypical adaptation mechanism for coping with a nutrient-limited environment.  相似文献   

10.
The marine green alga Ostreococcus tauri is the smallest-known free-living eukaryote. The recent sequencing of its genome extends this distinction, because it also has one of the smallest and most compact nuclear genomes. For other highly compacted genomes (e.g. those of microsporidian parasites and relic endosymbiont nucleomorphs), compaction is associated with severe gene loss. By contrast, O. tauri has retained a large complement of genes. Studying O. tauri should shed light on forces, other than parasitism and endosymbiosis, that result in densely packed genomes.  相似文献   

11.
RNase P catalyzes 5'-maturation of tRNAs. While bacterial RNase P comprises an RNA catalyst and a protein cofactor, the eukaryotic (nuclear) variant contains an RNA and up to ten proteins, all unrelated to the bacterial protein. Unexpectedly, a nuclear-encoded bacterial RNase P protein (RPP) homolog is found in several prasinophyte algae including Ostreococcus tauri. We demonstrate that recombinant O. tauri RPP can functionally reconstitute with bacterial RNase P RNAs (RPRs) but not with O. tauri organellar RPRs, despite the latter's presumed bacterial origins. We also show that O. tauri PRORP, a homolog of Arabidopsis PRORP-1, displays tRNA 5'-processing activity in vitro. We discuss the implications of the striking diversity of RNase P in O. tauri, the smallest known free-living eukaryote.  相似文献   

12.
Phenotypic and genotypic methods were used to prove the existence of Frankia strains isolated from an Elaeagnus sp. that are able to cross the inoculation barriers and infect Alnus spp. also. Repeated cycles of inoculation, nodulation, and reisolation were performed under axenic conditions. Frankia wild-type strain UFI 13270257 and three of its coisolates did exhibit complete infectivity and effectiveness on Elaeagnus spp. and Hippopha? rhamnoides and variable infectivity on Alnus spp. Microscopical observation of host plant roots showed that these strains are able to infect Alnus spp. by penetrating deformed root hairs. Reisolates obtained from nodules induced on monoxenic Alnus glutinosa, Alnus incana, and Elaeagnus angustifolia resembled the parent strains in host infectivity range, in planta and in vitro morphophysiology, isoenzymes, and nif and rrn restriction fragment length polymorphisms, thus fulfilling Koch's postulates on both host plant genera. Alnus and Elaeagnus group-specific polymerase chain reaction DNA amplifications, DNA-DNA hybridizations, and partial gene sequences coding for 16S rRNA provided evidence for the genetic uniformity of wild-type strains and their inclusion into one and the same genomic species, clearly belonging to the Elaeagnus group of Frankia species.  相似文献   

13.
A type II restriction endonuclease, CviBI, was isolated from a eukaryotic, Chlorella-like green alga infected with the dsDNA containing virus NC-1A. The enzyme recognizes the sequence GANTC and cleaves DNA between the G and A. Methylation of deoxyadenosine in the GANTC sequence probably inhibits enzyme activity. In vitro CviBI cleaves host nuclear DNA but not viral DNA. A survey of 18 other viruses which infect the same Chlorella sp. revealed that infection with 5 of these viruses also induced a restriction endonuclease which cleaves DNA into the same size fragments as CviBI.  相似文献   

14.
Phenotypic and genotypic methods were used to prove the existence of Frankia strains isolated from an Elaeagnus sp. that are able to cross the inoculation barriers and infect Alnus spp. also. Repeated cycles of inoculation, nodulation, and reisolation were performed under axenic conditions. Frankia wild-type strain UFI 13270257 and three of its coisolates did exhibit complete infectivity and effectiveness on Elaeagnus spp. and Hippophaë rhamnoides and variable infectivity on Alnus spp. Microscopical observation of host plant roots showed that these strains are able to infect Alnus spp. by penetrating deformed root hairs. Reisolates obtained from nodules induced on monoxenic Alnus glutinosa, Alnus incana, and Elaeagnus angustifolia resembled the parent strains in host infectivity range, in planta and in vitro morphophysiology, isoenzymes, and nif and rrn restriction fragment length polymorphisms, thus fulfilling Koch's postulates on both host plant genera. Alnus and Elaeagnus group-specific polymerase chain reaction DNA amplifications, DNA-DNA hybridizations, and partial gene sequences coding for 16S rRNA provided evidence for the genetic uniformity of wild-type strains and their inclusion into one and the same genomic species, clearly belonging to the Elaeagnus group of Frankia species.  相似文献   

15.
In an effort to understand the relationship between Vibrio and vibriophage populations, abundances of Vibrio spp. and viruses infecting Vibrio parahaemolyticus (VpVs) were monitored for a year in Pacific oysters and water collected from Ladysmith Harbor, British Columbia, Canada. Bacterial abundances were highly seasonal, whereas high titers of VpVs (0.5 x 10(4) to 11 x 10(4) viruses cm(-3)) occurred year round in oysters, even when V. parahaemolyticus was undetectable (< 3 cells cm(-3)). Viruses were not detected (<10 ml(-1)) in the water column. Host-range studies demonstrated that 13 VpV strains could infect 62% of the V. parahaemolyticus strains from oysters (91 pairings) and 74% of the strains from sediments (65 pairings) but only 30% of the water-column strains (91 pairings). Ten viruses also infected more than one species among V. alginolyticus, V. natriegens, and V. vulnificus. As winter approached and potential hosts disappeared, the proportion of host strains that the viruses could infect decreased by approximately 50% and, in the middle of winter, only 14% of the VpV community could be plated on summer host strains. Estimates of virus-induced mortality on V. parahaemolyticus indicated that other host species were required to sustain viral production during winter when the putative host species was undetectable. The present study shows that oysters are likely one of the major sources of viruses infecting V. parahaemolyticus in oysters and in the water column. Furthermore, seasonal shifts in patterns of host range provide strong evidence that the composition of the virus community changes during winter.  相似文献   

16.
Very-long-chain polyunsaturated fatty acids, such as arachidonic acid (ARA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA), have well-documented importance in human health and nutrition. Sustainable production in robust host organisms that do not synthesize them naturally requires the coordinated expression of several heterologous desaturases and elongases. In the present study we show production of EPA in Saccharomyces cerevisiae using glucose as the sole carbon source through expression of five heterologous fatty acid desaturases and an elongase. Novel Δ5-desaturases from the ciliate protozoan Paramecium tetraurelia and from the microalgae Ostreococcus tauri and Ostreococcus lucimarinus were identified via a BLAST search, and their substrate preferences and desaturation efficiencies were assayed in a yeast strain producing the ω6 and ω3 fatty acid substrates for Δ5-desaturation. The Δ5-desaturase from P. tetraurelia was up-to-2-fold more efficient than the microalgal desaturases and was also more efficient than Δ5-desaturases from Mortierella alpina and Leishmania major. In vivo investigation of acyl carrier substrate specificities showed that the Δ5-desaturases from P. tetraurelia, O. lucimarinus, O. tauri, and M. alpina are promiscuous toward the acyl carrier substrate but prefer phospholipid-bound substrates. In contrast, the Δ5-desaturase from L. major showed no activity on phospholipid-bound substrate and thus appears to be an exclusively acyl coenzyme A-dependent desaturase.  相似文献   

17.
An ideal model system to study antiviral immunity and host-pathogen co-evolution would combine a genetically tractable small animal with a virus capable of naturally infecting the host organism. The use of C. elegans as a model to define host-viral interactions has been limited by the lack of viruses known to infect nematodes. From wild isolates of C. elegans and C. briggsae with unusual morphological phenotypes in intestinal cells, we identified two novel RNA viruses distantly related to known nodaviruses, one infecting specifically C. elegans (Orsay virus), the other C. briggsae (Santeuil virus). Bleaching of embryos cured infected cultures demonstrating that the viruses are neither stably integrated in the host genome nor transmitted vertically. 0.2 μm filtrates of the infected cultures could infect cured animals. Infected animals continuously maintained viral infection for 6 mo (~50 generations), demonstrating that natural cycles of horizontal virus transmission were faithfully recapitulated in laboratory culture. In addition to infecting the natural C. elegans isolate, Orsay virus readily infected laboratory C. elegans mutants defective in RNAi and yielded higher levels of viral RNA and infection symptoms as compared to infection of the corresponding wild-type N2 strain. These results demonstrated a clear role for RNAi in the defense against this virus. Furthermore, different wild C. elegans isolates displayed differential susceptibility to infection by Orsay virus, thereby affording genetic approaches to defining antiviral loci. This discovery establishes a bona fide viral infection system to explore the natural ecology of nematodes, host-pathogen co-evolution, the evolution of small RNA responses, and innate antiviral mechanisms.  相似文献   

18.
Large DNA viruses are ubiquitous, infecting diverse organisms ranging from algae to man, and have probably evolved from an ancient common ancestor. In aquatic environments, such algal viruses control blooms and shape the evolution of biodiversity in phytoplankton, but little is known about their biological functions. We show that Ostreococcus tauri, the smallest known marine photosynthetic eukaryote, whose genome is completely characterized, is a host for large DNA viruses, and present an analysis of the life-cycle and 186,234 bp long linear genome of OtV5. OtV5 is a lytic phycodnavirus which unexpectedly does not degrade its host chromosomes before the host cell bursts. Analysis of its complete genome sequence confirmed that it lacks expected site-specific endonucleases, and revealed the presence of 16 genes whose predicted functions are novel to this group of viruses. OtV5 carries at least one predicted gene whose protein closely resembles its host counterpart and several other host-like sequences, suggesting that horizontal gene transfers between host and viral genomes may occur frequently on an evolutionary scale. Fifty seven percent of the 268 predicted proteins present no similarities with any known protein in Genbank, underlining the wealth of undiscovered biological diversity present in oceanic viruses, which are estimated to harbour 200Mt of carbon.  相似文献   

19.
正Dear Editor,Previous studies had described the adaptation of enterovirus 71 (EV-A71) strains that enabled entry and viral replication in Chinese Hamster Ovary (CHO) cell line(Zaini and Mc Minn 2012; Zaini et al. 2012). These adapted  相似文献   

20.
A quantitative PCR (QPCR) assay based on the use of SYBR Green I was developed to assess the abundance of specific groups of picoeukaryotes in marine waters. Six primer sets were designed targeting four different taxonomic levels: domain (Eukaryota), division (Chlorophyta), order (Mamiellales) and genus (Bathycoccus, Micromonas, and Ostreococcus). Reaction conditions were optimized for each primer set which was validated in silico, on agarose gels, and by QPCR against a variety of target and non-target cultures. The approach was tested by estimating gene copy numbers for Micromonas, Bathycoccus, and Ostreococcus in seawater samples to which cultured cells were added in various concentrations. QPCR was then used to determine that rRNA gene (rDNA) copy number varied from one to more than 12,000 in 18 strains of phytoplankton. Finally, QPCR was applied to environmental samples from a Mediterranean Sea coastal site and the results were compared to those obtained by Fluorescent in situ hybridization (FISH). The data obtained demonstrate that Chlorophyta and more specifically Mamiellales were important in these waters, especially during the winter picoplankton bloom. The timing of major abundance peaks of the targeted species was similar by QPCR and FISH. When used in conjunction with other techniques such as FISH or gene clone libraries, QPCR appears as very promising to quickly obtain data on the ecological distribution of important phytoplankton groups. Data interpretation must take into account primer specificity and the varying rRNA gene copy number among eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号