首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
2.
3.
The Lkb1 tumour suppressor is a multitasking kinase participating in a range of physiological processes. We have determined the impact of Lkb1 deficiency on intestinal homeostasis, particularly focussing on secretory cell differentiation and development since we observe strong expression of Lkb1 in normal small intestine Paneth and goblet cells. We crossed mice bearing an Lkb1 allele flanked with LoxP sites with those carrying a Cyp1a1-specific inducible Cre recombinase. Lkb1 was efficiently deleted from the epithelial cells of the mouse intestine after intraperitoneal injection of the inducing agent β-naphthoflavone. Bi-allelic loss of Lkb1 led to the perturbed development of Paneth and goblet cell lineages. These changes were characterised by the lack of Delta ligand expression in Lkb1-deficient secretory cells and a significant increase in the levels of the downstream Notch signalling effector Hes5 but not Hes1. Our data show that Lkb1 is required for the normal differentiation of secretory cell lineages within the intestine, and that Lkb1 deficiency modulates Notch signalling modulation in post-mitotic cells.  相似文献   

4.
5.
Recent studies have shown that Notch signaling plays an important role in epidermal development, but the underlying molecular mechanisms remain unclear. Here, by integrating loss- and gain-of-function studies of Notch receptors and Hes1, we describe molecular information about the role of Notch signaling in epidermal development. We show that Notch signaling determines spinous cell fate and induces terminal differentiation by a mechanism independent of Hes1, but Hes1 is required for maintenance of the immature state of spinous cells. Notch signaling induces Ascl2 expression to promote terminal differentiation, while simultaneously repressing Ascl2 through Hes1 to inhibit premature terminal differentiation. Despite the critical role of Hes1 in epidermal development, Hes1 null epidermis transplanted to adult mice showed no obvious defects, suggesting that this role of Hes1 may be restricted to developmental stages. Overall, we conclude that Notch signaling orchestrates the balance between differentiation and immature programs in suprabasal cells during epidermal development.  相似文献   

6.
Rathke's pouch contains progenitor cells that differentiate into the endocrine cells of the pituitary gland. It gives rise to gonadotrope, thyrotrope, somatotrope, corticotrope and lactotrope cells in the anterior lobe and the intermediate lobe melanotropes. Pituitary precursor cells express many members of the Notch signaling pathway including the downstream effector gene Hes1. We hypothesized that Hes1 regulates the timing of precursor differentiation and cell fate determination. To test this idea, we expressed Hes1 in differentiating pituitary cells and found that it can inhibit gonadotrope and thyrotrope differentiation. Pituitaries of Hes1 deficient mice have anterior lobe hypoplasia. All cells in the anterior lobe are specified and differentiate, but an early period of increased cell death and reduced proliferation causes reduced growth, evident as early as e14.5. In addition, cells within the intermediate lobe differentiate into somatotropes instead of melanotropes. Thus, the Hes1 repressor is essential for melanotrope specification. These results demonstrate that Notch signaling plays multiple roles in pituitary development, influencing precursor number, organ size, cell differentiation and ultimately cell fate.  相似文献   

7.
BackgroundGegen Qinlian decoction (GQ) is a well-known traditional Chinese medicine that has been clinically proven to be effective in treating ulcerative colitis (UC). However, its therapeutic mechanism has not been fully elucidated. Notch signaling plays an essential role in the regeneration of the intestinal epithelium.PurposeThis study was designed to ascertain the mechanism by which GQ participates in the recovery of the colonic mucosa by regulating Notch signaling in acute and chronic UC models.MethodsAcute and chronic UC mice (C57BL/6) were established with 3 and 2% dextran sulfate sodium (DSS), respectively, and treated with oral administration of GQ. The expression of the Notch target gene Hes1 and the Notch-related proteins RBP-J, MAML and Math1 was analyzed by western blotting. PTEN mRNA levels were detected by qRT-PCR. Mucin production that is characteristic of goblet cells was determined by Alcian blue/periodic acid-Schiff staining and verified by examining MUC2 mRNA levels by qRT-PCR. Cell proliferation was assayed by immunohistochemistry analysis of Ki67. HT-29 and FHC cells and Toll-like receptor 4 knockout (TLR4−/−) acute UC mice were also used in this study.ResultsGQ restored the injured colonic mucosa in both acute and chronic UC models. We found that Notch signaling was hyperactive in acute UC mice and hypoactive in chronic UC mice. GQ downregulated Hes1, RBP-J and MAML proteins and augmented goblet cells in the acute UC models, whereas GQ upregulated Hes1, RBP-J and MAML proteins in chronic UC mice, reducing goblet cell differentiation and promoting crypt base columnar (CBC) stem cell proliferation. Hes1 mRNA was suppressed in TLR4−/− UC mice, and GQ treatment reversed this effect. In vitro, GQ reduced Hes1 protein in Notch-activated HT29 and FHC cells but increased Hes1 protein in Notch-inhibited cells.ConclusionsGQ restored the colonic epithelium by maintaining mucosal homeostasis via bidirectional regulation of Notch signaling in acute/chronic UC models.  相似文献   

8.
The orphan nuclear receptor COUP-TFI (Nr2f1) regulates many aspects of mammalian development, but little is known about its role in cochlear hair cell and Deiter's support cell development. The COUP-TFI knockout (COUP-TFI(-/-)) has a significant increase in hair cell (HC) number in the mid-to-apical turns. The total number of hair cells is not increased over wild type, perhaps because of displaced hair cells and a shortened cochlear duct. This implicates a defect of convergent-extension in the COUP-TFI(-/-) duct. In addition, excess proliferation in the COUP-TFI(-/-) sensory epithelium indicates that the origin of the extra HCs in the apex is complex. Because loss-of-function studies of Notch signaling components have similar phenotypes, we investigated Notch regulation of hair cell differentiation in COUP-TFI(-/-) mice and confirmed misregulation of Notch signaling components, including Jag1, Hes5 and in a manner consistent with reduced Notch signaling, and correlated with increases in hair cell and support cell differentiation. The disruption of Notch signaling by a gamma-secretase inhibitor in an in vitro organ culture system of wild-type cochleae resulted in a reduction in expression of the Notch target gene Hes5 and an increase in hair cell differentiation. Importantly, inhibition of Notch activity resulted in a greater increase in hair cell differentiation in COUP-TFI(-/-) cochlear cultures than in wild-type cultures, suggesting a hypersensitivity to Notch inactivation in COUP-TFI(-/-) cochlea, particularly at the apical turn. Thus, we present evidence that reduced Notch signaling contributes to increases in hair cell and support cell differentiation in COUP-TFI(-/-) mice, and suggest that COUP-TFI is required for Notch regulation of hair cell and support cell differentiation.  相似文献   

9.
The conserved role of Notch signaling in controlling intestinal cell fate specification and homeostasis has been extensively studied. Nevertheless, the precise identity of the cells in which Notch signaling is active and the role of different Notch receptor paralogues in the intestine remain ambiguous, due to the lack of reliable tools to investigate Notch expression and function in vivo. We generated a new series of transgenic mice that allowed us, by lineage analysis, to formally prove that Notch1 and Notch2 are specifically expressed in crypt stem cells. In addition, a novel Notch reporter mouse, Hes1-EmGFP(SAT), demonstrated exclusive Notch activity in crypt stem cells and absorptive progenitors. This roster of knock-in and reporter mice represents a valuable resource to functionally explore the Notch pathway in vivo in virtually all tissues.  相似文献   

10.
Notch signaling is an evolutionarily conserved cell–cell communication mechanism involved in the regulation of cell proliferation, differentiation and fate decisions of mammalian cells. In the present study, we investigated the possible requirement for Notch signaling in the proliferation and differentiation of porcine satellite cells. We show that Notch1, 2 and 3 are expressed in cultured porcine satellite cells. Knock-down of NOTCH1, but not NOTCH2 and NOTCH3, decreases the proliferation of porcine satellite cells. In contrast, enhancement of NOTCH1 expression via treatment of porcine satellite cells with recombinant NF-κB increases the proliferation of porcine satellite cells. The alteration of porcine satellite cell proliferation is associated with significant changes in the expression of cell cycle related genes (cyclin B1, D1, D2, E1 and p21), myogenic regulatory factors (MyoD and myogenin) and the Notch effector Hes5. In addition, alteration of Notch1 expression in porcine satellite cells causes changes in the expression of GSK3β-3. Taken together, these findings suggest that of the four notch-related genes, Notch1is likely to be required for regulating the proliferation and therefore the maintenance of porcine satellite cells in vivo, and do so through activation of the Notch effector gene Hes5.  相似文献   

11.
Proper development of the hypothalamic-pituitary axis requires precise neuronal signaling to establish a network that regulates homeostasis. The developing hypothalamus and pituitary utilize similar signaling pathways for differentiation in embryonic development. The Notch signaling effector gene Hes1 is present in the developing hypothalamus and pituitary and is required for proper formation of the pituitary, which contains axons of arginine vasopressin (AVP) neurons from the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON). We hypothesized that Hes1 is necessary for the generation, placement and projection of AVP neurons. We found that Hes1 null mice show no significant difference in cell proliferation or death in the developing diencephalon at embryonic day 10.5 (e10.5) or e11.5. By e16.5, AVP cell bodies are formed in the SON and PVN, but are abnormally placed, suggesting that Hes1 may be necessary for the migration of AVP neurons. GAD67 immunoreactivity is ectopically expressed in Hes1 null mice, which may contribute to cell body misplacement. Additionally, at e18.5 Hes1 null mice show continued misplacement of AVP cell bodies in the PVN and SON and additionally exhibit abnormal axonal projection. Using mass spectrometry to characterize peptide content, we found that Hes1 null pituitaries have aberrant somatostatin (SS) peptide, which correlates with abnormal SS cells in the pituitary and misplaced SS axon tracts at e18.5. Our results indicate that Notch signaling facilitates the migration and guidance of hypothalamic neurons, as well as neuropeptide content.  相似文献   

12.
13.
Oscillations in notch signaling regulate maintenance of neural progenitors   总被引:3,自引:0,他引:3  
Shimojo H  Ohtsuka T  Kageyama R 《Neuron》2008,58(1):52-64
Expression of the Notch effector gene Hes1 is required for maintenance of neural progenitors in the embryonic brain, but persistent and high levels of Hes1 expression inhibit proliferation and differentiation of these cells. Here, by using a real-time imaging method, we found that Hes1 expression dynamically oscillates in neural progenitors. Furthermore, sustained overexpression of Hes1 downregulates expression of proneural genes, Notch ligands, and cell cycle regulators, suggesting that their proper expression depends on Hes1 oscillation. Surprisingly, the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta-like1 (Dll1) are also expressed in an oscillatory manner by neural progenitors, and inhibition of Notch signaling, a condition known to induce neuronal differentiation, leads to downregulation of Hes1 and sustained upregulation of Ngn2 and Dll1. These results suggest that Hes1 oscillation regulates Ngn2 and Dll1 oscillations, which in turn lead to maintenance of neural progenitors by mutual activation of Notch signaling.  相似文献   

14.
15.
16.
17.
Transmembrane protease serine 3 (TMPRSS3) is a member of type II transmembrane serine proteases (TTSP) family, which play important roles in the development and progression of various cancers. However, the role of TMPRSS3 in glioma remains unclear. In the present study, we evaluated the expression patterns of TMPRSS3 in clinical tumor samples and glioma cell lines. The results showed that TMPRSS3 was highly expressed in both human glioma tissues and cell lines. Knockdown of TMPRSS3 in glioma cells by transfection with small interfering RNA targeting TMPRSS3 (si-TMPRSS3) significantly suppressed cell proliferation and migration/invasion. Moreover, knockdown of TMPRSS3 markedly elevated the apoptotic rate of glioma cells. Si-TMPRSS3 transfection also resulted in a remarkable increase in bax expression and a notable decrease in bcl-2 expression in glioma cells. Furthermore, TMPRSS3 knockdown markedly suppressed the expressions of Notch1 and Hes1. The results indicated that knockdown of TMPRSS3 exhibited antiglioma effect, which is associated with the inactivation of the Notch signaling pathway. These findings suggested that TMPRSS3 might be used as a therapeutic target for glioma treatment.  相似文献   

18.
为研究芳姜黄酮(Ar-Turmerone)对人鳞状细胞癌A431细胞增殖、迁移、侵袭和凋亡的影响及机制。实验采用CCK-8法检测抑制率,吉姆萨染色观察细胞形态,划痕实验和Transwell小室实验研究细胞迁移和侵袭能力的变化,流式细胞仪检测细胞凋亡率。此外,通过实时荧光定量聚合酶链反应(Real-time PCR)与蛋白质印迹法(western blot)法检测mRNA和蛋白表达。siRNA阻断Notch1,Hes1和PTEN,检测相应的下游mRNA和蛋白的表达变化,流式细胞仪检测细胞凋亡率。结果发现,芳姜黄酮可以抑制A431细胞增殖,使细胞形态发生改变,抑制细胞体外迁移和侵袭能力,促进细胞凋亡。经过芳姜黄酮处理后,Notch1,Hes1,PTEN的mRNA和蛋白表达升高。沉默Notch1,Hes1 mRNA和蛋白表达低于单纯给药组,而沉默Hes1,PTEN mRNA和蛋白表达也低于单纯给药组;沉默PTEN后,与单纯给药组相比,细胞死亡率降低。总之,芳姜黄酮可以抑制人鳞状细胞癌A431细胞的增殖并促进其凋亡,且具有抑制体外迁移和侵袭的作用,其促进细胞凋亡的机制是通过Notch1/Hes1/PTEN途径实现的。  相似文献   

19.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regulating subsequent exocrine differentiation events. Here, we show that activated Notch and Notch target genes actively repress completion of an acinar cell differentiation program in developing mouse and zebrafish pancreas. In developing mouse pancreas, the Notch target gene Hes1 is co-expressed with Ptf1-P48 in exocrine precursor cells, but not in differentiated amylase-positive acinar cells. Using lentiviral delivery systems to induce ectopic Notch pathway activation in explant cultures of E10.5 mouse dorsal pancreatic buds, we found that both Hes1 and Notch1-IC repress acinar cell differentiation, but not Ptf1-P48 expression, in a cell-autonomous manner. Ectopic Notch activation also delays acinar cell differentiation in developing zebrafish pancreas. Further evidence of a role for endogenous Notch in regulating exocrine pancreatic differentiation was provided by examination of zebrafish embryos with homozygous mindbomb mutations, in which Notch signaling is disrupted. mindbomb-deficient embryos display accelerated differentiation of exocrine pancreas relative to wild-type clutchmate controls. A similar phenotype was induced by expression of a dominant-negative Suppressor of Hairless [Su(H)] construct, confirming that Notch actively represses acinar cell differentiation during zebrafish pancreatic development. Using transient transfection assays involving a Ptf1-responsive reporter gene, we further demonstrate that Notch and Notch/Su(H) target genes directly inhibit Ptf1 activity, independent of changes in expression of Ptf1 component proteins. These results define a normal inhibitory role for Notch in the regulation of exocrine pancreatic differentiation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号