首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The establishment of the anterior-posterior (AP) axis in Drosophila melanogaster requires signaling between the oocyte and surrounding somatic follicle cells during oogenesis [1] [2]. First, a signal from the oocyte (Gurken (Grk), a transforming growth factor-alpha (TGFalpha) homolog) is received by predetermined terminal follicle cells in which the epidermal growth factor receptor (EGFR) pathway is activated and a posterior fate is induced [2] [3] [4]. Later, the posterior follicle cells send an unidentified signal back to the oocyte, which leads to the reorganization of its cytoskeletal polarity. This reorganization is required for proper localization of maternal determinants, such as oskar (osk) and bicoid (bcd) mRNAs, that determine the AP polarity of the oocyte and the subsequent embryo [2]. We show here that when the gene lanA, which encodes the extracellular matrix component laminin A, is mutated in posterior follicle cells, localization of AP determinants is disrupted in the underlying oocyte. Posterior follicle-cell differentiation and follicle cell apical-basal polarity are unaffected in the lanA mutant cells, suggesting that laminin A is required for correct signaling from the posterior follicle cells that polarizes the oocyte. This is the first evidence that the extracellular matrix is involved in the establishment of a major body axis.  相似文献   

8.
9.
Subdivision of the Drosophila wing imaginal disc by EGFR-mediated signaling   总被引:5,自引:0,他引:5  
Growth and patterning of the Drosophila wing imaginal disc depends on its subdivision into dorsoventral (DV) compartments and limb (wing) and body wall (notum) primordia. We present evidence that both the DV and wing-notum subdivisions are specified by activation of the Drosophila Epidermal Growth Factor Receptor (EGFR). We show that EGFR signaling is necessary and sufficient to activate apterous (ap) expression, thereby segregating the wing disc into D (ap-ON) and V (ap-OFF) compartments. Similarly, we demonstrate that EGFR signaling directs the expression of Iroquois Complex (Iro-C) genes in prospective notum cells, rendering them distinct from, and immiscible with, neighboring wing cells. However, EGFR signaling acts only early in development to heritably activate ap, whereas it is required persistently during subsequent development to maintain Iro-C gene expression. Hence, as the disc grows, the DV compartment boundary can shift ventrally, beyond the range of the instructive EGFR signal(s), in contrast to the notum-wing boundary, which continues to be defined by EGFR input.  相似文献   

10.
11.
12.
13.
Eyes absent,a key repressor of polar cell fate during Drosophila oogenesis   总被引:3,自引:0,他引:3  
Throughout Drosophila oogenesis, specialized somatic follicle cells perform crucial functions in egg chamber formation and in signaling between somatic and germline cells. In the ovary, at least three types of somatic follicle cells, polar cells, stalk cells and main body epithelial follicle cells, can be distinguished when egg chambers bud from the germarium. Although specification of these three somatic cell types is important for normal oogenesis and subsequent embryogenesis, the molecular basis for establishment of their cell fates is not completely understood. Our studies reveal the gene eyes absent (eya) to be a key repressor of polar cell fate. EYA is a nuclear protein that is normally excluded from polar and stalk cells, and the absence of EYA is sufficient to cause epithelial follicle cells to develop as polar cells. Furthermore, ectopic expression of EYA is capable of suppressing normal polar cell fate and compromising the normal functions of polar cells, such as promotion of border cell migration. Finally, we show that ectopic Hedgehog signaling, which is known to cause ectopic polar cell formation, does so by repressing eya expression in epithelial follicle cells.  相似文献   

14.
The establishment of dorsal-ventral (DV) polarity in the Drosophila embryo depends upon a localized signal that is generated in the perivitelline space of the egg through the action of a serine proteolytic cascade. Spatial regulation of this pathway is determined by the expression of the pipe gene in a subpopulation of ventral follicle cells in the developing egg chamber. The Pipe protein exhibits homology to vertebrate glycosaminoglycan sulfotransferases. In a previous study, we demonstrated that embryonic DV polarity depends upon the sulfotransferase activity of Pipe. Surprisingly, however, our results also indicated that formation of the embryonic DV axis does not require the synthesis of the high-energy sulfate donor, 3'-phosphoadenosine 5'-phosphosulfate (PAPS) in the follicle cells in which Pipe is presumed to function. Here, we resolve this apparent paradox by demonstrating that dorsalized embryos are only produced by egg chambers in which both germline and follicle cells lack PAPS synthetase activity. Thus, PAPS produced either in the germline or in the follicular epithelium can support the requirement for Pipe sulfotransferase activity in embryonic DV patterning. This finding indicates the existence of a conduit for the movement of PAPS between the germline and the follicle cells, which highlights a previously unappreciated mechanism of soma/germline cooperation affecting pattern formation.  相似文献   

15.
16.
Li Q  Xin T  Chen W  Zhu M  Li M 《Cell research》2008,18(3):372-384
The intricately regulated differentiation of the somatic follicle cell lineages into distinct subpopulations with specific functions plays an essential role in Drosophila egg development. At early oogenesis, induction of the stalk cells generates the first anteroposterior (AP) asymmetry in the egg chamber by inducing the posterior localization of the oocyte. Later, the properly specified posterior follicle cells signal to polarize the oocyte along the AP and dorsoventral (DV) axes at mid-oogenesis. Here, we show that lethal(2)giant larvae (lgl), a Drosophila tumor suppressor gene, is required in the follicle cells for the differentiation of both stalk cells and posterior follicle cells. Loss-of-function mutations in lgl cause oocyte mispositioning in the younger one of the fused chambers, due to lack of the stalk. Removal of lgl function from the posterior follicle cells using the FLP/FRT system results in loss of the oocyte polarity that is elicited by the failure of those posterior cells to differentiate normally. Thus, we provide the first demonstration that lgl is implicated in the formation of the initial AP asymmetry and the patterning of the AP and DV axes in the oocyte by acting in the specification of a subset of somatic follicle cells.  相似文献   

17.
18.
19.
Sprouty is a general inhibitor of receptor tyrosine kinase signaling.   总被引:10,自引:0,他引:10  
Sprouty was originally identified as an inhibitor of Drosophila FGF receptor signaling during tracheal development. By following the capacity of ectopic Sprouty to abolish the pattern of activated MAP kinase in embryos, we show that Sprouty can inhibit other receptor tyrosine kinase (RTK) signaling pathways, namely the Heartless FGF receptor and the EGF receptor. Similarly, in wing imaginal discs, ectopic Sprouty abolishes activated MAP kinase induced by the EGF receptor pathway. Sprouty expression is induced by the EGFR pathway in some, but not all, tissues in which EGFR is activated, most notably in follicle cells of the ovary, the wing imaginal disc and the eye disc. In the ovary, induction of sprouty expression follows the pattern of EGFR activation in the follicle cells. Generation of homozygous sprouty mutant follicle-cell clones demonstrates an essential role for Sprouty in restricting EGFR activation throughout oogenesis. At the stage when dorso-ventral polarity of the follicle cells is established, Sprouty limits the ventral expansion of the activating Gurken signal. Later, when dorsal appendage fates are determined, reduction of signaling by Sprouty facilitates the induction of inter-appendage cell fates. The capacity of Sprouty to reduce or eliminate accumulation of activated MAP kinase indicates that in vivo it intersects with the pathway upstream to MAP kinase. The ability of ectopic Sprouty to rescue lethality caused by activated Raf suggests that it may impinge upon the pathway by interacting with Raf or downstream to it.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号