首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Estrogen receptors (ERs)(1) highly expressed by multiple myeloma (MM) cells and stimulation of estrogenic ligands leads to cell apoptosis. Interleukin (IL)-6 is a major growth factor in the pathogenesis of MM. However, little is known concerning the molecular consequences of ER activation on IL-6-regulated MM cell growth. Here we show that the ER agonist 17 beta-estradiol completely abolished IL-6-inducible MM cell proliferation. By contrast, the ER antagonist ICI 182,780 overcame the inhibitory effect of estrogen. Estrogen blocked STAT3 DNA binding and transactivation but failed to affect the mRNA expression of IL-6 receptor chains or activation of JAK2 and STAT3. Estrogen-activated ER did not associate directly with STAT3. Estrogen induced the mRNA expression of PIAS3 (protein inhibitor of activated STAT3) and increased PIAS3 physical association with STAT3, suggesting a possible mechanism of STAT3 inhibition requiring PIAS3 as a co-regulator modulating the cross-talk between ER and STAT3. These data directly demonstrate STAT3 to be a molecular participant in ER inhibition of the IL-6 signaling pathway in human MM cells and provides the molecular basis for the potential use of estrogenic ligands in the treatment of MM or other tumors where IL-6 has an autocrine or paracrine role.  相似文献   

2.
Macrophages dictate both initiation and resolution of inflammation. During acute inflammation classically activated macrophages (M1) predominate, and during the resolution phase alternative macrophages (M2) are dominant. The molecular mechanisms involved in macrophage polarization are understudied. MicroRNAs are differentially expressed in M1 and M2 macrophages that influence macrophage polarization. We identified a role of miR-21 in macrophage polarization, and found that cross-talk between miR-21 and the lipid mediator prostaglandin E2 (PGE2) is a determining factor in macrophage polarization. miR-21 inhibition impairs expression of M2 signature genes but not M1 genes. PGE2 and its downstream effectors PKA and Epac inhibit miR-21 expression and enhance expression of M2 genes, and this effect is more pronounced in miR-21-/- cells. Among potential targets involved in macrophage polarization, we found that STAT3 and SOCS1 were enhanced in miR-21-/- cells and further enhanced by PGE2. We found that STAT3 was a direct target of miR-21 in macrophages. Silencing the STAT3 gene abolished PGE2-mediated expression of M2 genes in miR-21-/- macrophages. These data shed light on the molecular brakes involved in homeostatic macrophage polarization and suggest new therapeutic strategies to prevent inflammatory responses.  相似文献   

3.
Objectives:To investigate the effects of miR-451a targeting interleukin-6 (IL-6) on the proliferation and apoptosis of multiple myeloma (MM) cells and its potential mechanism via JAK2/STAT3 pathway.Methods:mRNA expression of miR-451a and IL-6R in the plasma of patients with MM and normal controls were determined by RT-qPCR. U266 cells were cultured, transfected with miR-451a mimics, the proliferative ability of U266 cells was determined by CCK-8. Potential targets of miR-451a were predicted with the biological software TargetScan, and the direct relationship between miR-451a and the target IL-6R was analyzed by a dual-luciferase reporter assay. U266 cells were stimulated with IL-6R (100 ng/ml), and the proliferative ability and apoptosis rate were determined by CCK-8 and flow cytometry after 48h.Results:In the plasma of patients with MM, miR-451a expression was low and IL-6R expression was high. miR-451a targeted and negatively regulated IL-6R. Overexpressing miR-451a inhibited the proliferation and promoted the apoptosis of U266 cells. IL-6R acting on U266 cells promoted the proliferation and inhibited the apoptosis of U266 cells. Overexpressing miR-451a inhibited the activation of JAK2/STAT3 pathway and down-regulating miR-451a promoted the activation of JAK2/STAT3 pathway.Conclusions:miR-451a targeting IL-6R activates JAK2/STAT3 pathway, thus regulates the proliferation and apoptosis in MM cells.  相似文献   

4.
5.
6.
7.
8.
9.
Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic activity of miR-29b leads to promoter demethylation of suppressor of cytokine signaling-1 (SOCS-1), a hypermethylated tumor suppressor gene. Enforced expression of synthetic miR-29b mimics in MM cell lines resulted in SOCS-1 gene promoter demethylation, as assessed by Sequenom MassARRAY EpiTYPER analysis, and SOCS-1 protein upregulation. miR-29b-induced SOCS-1 demethylation was associated with reduced STAT3 phosphorylation and impaired NFκB activity. Downregulation of VEGF-A and IL-8 mRNAs could be detected in MM cells transfected with miR-29b mimics as well as in endothelial (HUVEC) or stromal (HS-5) cells treated with conditioned medium from miR-29b-transfected MM cells. Notably, enforced expression of miR-29b mimics increased adhesion of MM cells to HS-5 and reduced migration of both MM and HUVEC cells. These findings suggest that miR-29b is a negative regulator of either MM or endothelial cell migration. Finally, the proteasome inhibitor bortezomib, which induces the expression of miR-29b, decreased global DNA methylation by a miR-29b-dependent mechanism and induced SOCS-1 promoter demethylation and protein upregulation. In conclusion, our data indicate that miR-29b is endowed with epigenetic activity and mediates previously unknown functions of bortezomib in MM cells.  相似文献   

10.
11.
12.
13.
14.
Dexamethasone is widely used in multiple myeloma (MM) for its cytotoxic effects on lymphoid cells. However, many MM patients are resistant to dexamethasone, although some can benefit from dexamethasone treatment. In this study, we noted that ω-3 polyunsaturated fatty acids (PUFAs) enhanced the dexamethasone sensitivity of MM cells by inducing cell apoptosis. q-PCR analysis revealed that miR-34a could be significantly induced by PUFAs in U266 and primary MM cells. Transfection with miR-34a antagonist or miR-34a agomir could restore or suppress the dexamethasone sensitivity in U266 cells. Both luciferase reporter assay and Western blot showed that Bcl-2 is the direct target of miR-34a in MM cells. In addition, we observed that PUFAs induced p53 protein expression in MM cells under dexamethasone administration. Furthermore, suppressing p53 by its inhibitor, Pifithrin-α, regulated the miR-34a expression and modulated the sensitivity to dexamethasone in U266 cells. In summary, these results suggest that PUFAs enhance dexamethasone sensitivity to MM cells through the p53/miR-34a axis with a likely contribution of Bcl-2 suppression.  相似文献   

15.
MicroRNAs (miRNAs) are a class of small endogenous gene regulators that have been implicated in various developmental and pathological processes. However, the precise identities and functions of miRNAs involved in antitumor immunity are not yet well understood. miRNA-21 is an oncogenic miRNA that can be detected in various tumours. In this study, we report that a miRNA-21 inhibitor enhances the release of chemoattractants RANTES and IP-10 in the MCF-7 breast cancer cell line and results in increased lymphocyte migration. Thus, miRNA-21 is a potential therapeutic target for cancer immunotherapy. We further demonstrated that PIAS3, a protein inhibitor of activated STAT3, is a target of miRNA-21 in MCF-7. Thus, miRNA-21 is a novel miRNA regulating immune cell recruitment, which acts at least in part via its inhibition of PIAS3 expression and oncogenic STAT3 signalling in tumour cells.  相似文献   

16.
17.
18.
Numerous reports suggest that IL-6 promotes survival and proliferation of multiple myeloma (MM) cells through the phosphorylation of a cell signaling protein, STAT3. Thus, agents that suppress STAT3 phosphorylation have potential for the treatment of MM. In the present report, we demonstrate that curcumin (diferuloylmethane), a pharmacologically safe agent in humans, inhibited IL-6-induced STAT3 phosphorylation and consequent STAT3 nuclear translocation. Curcumin had no effect on STAT5 phosphorylation, but inhibited the IFN-alpha-induced STAT1 phosphorylation. The constitutive phosphorylation of STAT3 found in certain MM cells was also abrogated by treatment with curcumin. Curcumin-induced inhibition of STAT3 phosphorylation was reversible. Compared with AG490, a well-characterized Janus kinase 2 inhibitor, curcumin was a more rapid (30 min vs 8 h) and more potent (10 micro M vs 100 micro M) inhibitor of STAT3 phosphorylation. In a similar manner, the dose of curcumin completely suppressed proliferation of MM cells; the same dose of AG490 had no effect. In contrast, a cell-permeable STAT3 inhibitor peptide that can inhibit the STAT3 phosphorylation mediated by Src blocked the constitutive phosphorylation of STAT3 and also suppressed the growth of myeloma cells. TNF-alpha and lymphotoxin also induced the proliferation of MM cells, but through a mechanism independent of STAT3 phosphorylation. In addition, dexamethasone-resistant MM cells were found to be sensitive to curcumin. Overall, our results demonstrated that curcumin was a potent inhibitor of STAT3 phosphorylation, and this plays a role in the suppression of MM proliferation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号