首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The possession of a conspicuous extension of colored ventral rays of the caudal fin in male fish of swordtails (genus Xiphophorus) is a prominent example for a trait that evolved by sexual selection. To understand the evolutionary history of this so-called sword molecularly, it is of interest to unravel the developmental pathways responsible for extended growth of sword rays during development of swordtail males. We isolated two msx genes and showed that they are differentially regulated during sword outgrowth. During sword growth in juvenile males, as well as during testosterone-induced sword development and fin ray regeneration in the sword after amputation, expression of msxC is markedly up-regulated in the sword forming fin rays. In contrast, msxE/1 is not differentially expressed in ventral and dorsal male fin rays, suggesting a link between the development of male secondary sexual characters in fins and up-regulation of msxC expression. In addition, we showed that msx gene expression patterns differ significantly between Xiphophorus and zebrafish. We also included in our study the gonopodium, a testosterone-dependent anal fin modification that serves as a fertilization organ in males of live-bearing fishes. Our finding that increased levels of msxC expression are associated with the testosterone-induced outgrowth of the gonopodium might suggest either that at least parts of the signaling pathways that pattern the evolutionary older gonopodium have been coopted to evolve a sexually selected innovation such as the sword or that increased msxC expression may be inherent to the growth process of long fin rays in general.  相似文献   

2.
Roles for Fgf signaling during zebrafish fin regeneration   总被引:7,自引:0,他引:7  
  相似文献   

3.
ABSTRACT: BACKGROUND: Zebrafish has emerged as a powerful model organism to study the process of regeneration. This teleost fish has the ability to regenerate various tissues and organs like the heart, spinal cord, retina and fins. In this study, we took advantage of the existence of an excellent morphological reference in the zebrafish caudal fin, the bony ray bifurcations, as a model to study positional information upon amputation. We investigated the existence of positional information for bifurcation formation by performing repeated amputations at different proximal-distal places along the fin. RESULTS: We show that, while amputations performed at a long distance from the bifurcation do not change its final proximal-distal position in the regenerated fin, consecutive amputations done at 1 segment proximal to the bifurcation (near the bifurcation) induce a positional reset and progressively shift its position distally. Furthermore, we investigated the potential role of Shh and Fgf signalling pathways in the determination of the bifurcation position and observed that they do not seem to be involved in this process. CONCLUSIONS: Our results reveal that, an amputation near the bifurcation inhibits the formation of the regenerated bifurcation in the pre-amputation position, inducing a distalization of this structure. This shows that the positional memory for bony ray bifurcations depends on the proximal-distal level of the amputation.  相似文献   

4.
Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed. As such, the roles that these mechanisms play in the metabolic memory phenomenon are currently being examined.We have recently reported the development of a zebrafish model of type I diabetes mellitus and characterized this model to show that diabetic zebrafish not only display the known secondary complications including the changes associated with diabetic retinopathy, diabetic nephropathy and impaired wound healing but also exhibit impaired caudal fin regeneration. This model is unique in that the zebrafish is capable to regenerate its damaged pancreas and restore a euglycemic state similar to what would be expected in post-transplant human patients. Moreover, multiple rounds of caudal fin amputation allow for the separation and study of pure epigenetic effects in an in vivo system without potential complicating factors from the previous diabetic state. Although euglycemia is achieved following pancreatic regeneration, the diabetic secondary complication of fin regeneration and skin wound healing persists indefinitely. In the case of impaired fin regeneration, this pathology is retained even after multiple rounds of fin regeneration in the daughter fin tissues. These observations point to an underlying epigenetic process existing in the metabolic memory state. Here we present the methods needed to successfully generate the diabetic and metabolic memory groups of fish and discuss the advantages of this model.  相似文献   

5.
韩建  许言  余逸敏  薛丽娜  方展强 《中国实验动物学报》2010,18(6):484-488,I0009,I0010
目的研究17α-甲基睾酮暴露对产后雌性剑尾鱼(Xiphophorus helleri)性逆转组织形态学变化的影响,探讨剑尾鱼第二性征变化作为水环境风险评价(ERA)的有效生物学标记的可能性。方法使用浸浴法以10μg/L 17α-甲基睾酮为剑尾鱼染毒持续7周,对实验鱼的体形、腹鳍、臀鳍、尾鳍及性腺等组织器官的变化进行观察;同时对幼鱼在实验室养殖条件下的性别分化进行统计。结果 17α-甲基睾酮对产后雌鱼有明显的影响,受诱导后出现性逆转,逐渐发育形成雄性第二性征:体形变纤细;腹鳍第1鳍条变短、第2和第3鳍条延长,臀鳍第3、4、5鳍条末端钩状化且第3鳍条变粗壮,尾鳍上下缘出现增生;体内与臀鳍相连的骨骼合并生长;受诱导的雌鱼性腺呈现退化趋势并伴有卵细胞坏死现象,生殖能力受到负面影响。结论剑尾鱼臀鳍和尾鳍变化可作为水环境雄激素物质污染监测的有效生物学标记。  相似文献   

6.

Background

The zebrafish has the capacity to regenerate many tissues and organs. The caudal fin is one of the most convenient tissues to approach experimentally due to its accessibility, simple structure and fast regeneration. In this work we investigate how the regenerative capacity is affected by recurrent fin amputations and by experimental manipulations that block regeneration.

Methodology/Principal Findings

We show that consecutive repeated amputations of zebrafish caudal fin do not reduce its regeneration capacity and do not compromise any of the successive regeneration steps: wound healing, blastema formation and regenerative outgrowth. Interfering with Wnt/ß-catenin signalling using heat-shock-mediated overexpression of Dickkopf1 completely blocks fin regeneration. Notably, if these fins were re-amputated at the non-inhibitory temperature, the regenerated caudal fin reached the original length, even after several rounds of consecutive Wnt/ß-catenin signalling inhibition and re-amputation.

Conclusions/Significance

We show that the caudal fin has an almost unlimited capacity to regenerate. Even after inhibition of regeneration caused by the loss of Wnt/ß-catenin signalling, a new amputation resets the regeneration capacity within the caudal fin, suggesting that blastema formation does not depend on a pool of stem/progenitor cells that require Wnt/ß-catenin signalling for their survival.  相似文献   

7.
Unlike humans, some vertebrate animals are able to completely regenerate damaged appendages and other organs. For example, adult zebrafish will regenerate the complex structure of an amputated caudal fin to a degree that the original and replacement fins are indistinguishable. The blastema, a mass of cells that uniquely forms following appendage amputation in regenerating animals, is the major source of regenerated tissue. However, the cell lineage(s) that contribute to the blastema and their ultimate contribution(s) to the regenerated fin have not been definitively characterized. It has been suggested that cells near the amputation site dedifferentiate forming multipotent progenitors that populate the blastema and then give rise to multiple cell types of the regenerated fin. Other studies propose that blastema cells are non-uniform populations that remain restricted in their potential to contribute to different cell lineages. We tested these models by using inducible Cre-lox technology to generate adult zebrafish with distinct, isolated groups of genetically labeled cells within the caudal fin. We then tracked populations of several cell types over the entire course of fin regeneration in individual animals. We found no evidence for the existence of multipotent progenitors. Instead, multiple cell types, including epidermal cells, intra-ray fibroblasts, and osteoblasts, contribute to the newly regenerated tissue while remaining highly restricted with respect to their developmental identity. Our studies further demonstrate that the regenerating fin consists of many repeating blastema "units" dedicated to each fin ray. These blastemas each have an organized structure of lineage restricted, dedifferentiated cells that cooperate to regenerate the caudal fin.  相似文献   

8.
Although the ray‐finned fishes are named for their bony, segmented lepidotrichia (fin rays), we are only beginning to understand the morphological and functional diversity of this key vertebrate structure. Fin rays support the fin web, and their material properties help define the function of the entire fin. Many earlier studies of fin ray morphology and function have focused on isolated rays, or on rays from only one or two fins. At the same time, relatively little is known about how different preservation techniques affect the material properties of many vertebrate structures, including fin rays. Here, we use three‐point bending tests to examine intra‐ and inter‐fin variation in the flexural stiffness of fin rays from yellow perch, Perca flavescens. We sampled fin rays from individuals that were assigned to one of three preservation treatments: fresh, frozen, and preserved with formalin. The flexural stiffness of the fin rays varied within and among fins. Pelvic‐fin rays were the stiffest, and pectoral fin rays the least stiff. The fin rays of the dorsal, anal, and caudal fins all had similar stiffness values, which were intermediate relative to those from the paired fins. The flexural stiffness of the fin rays was higher in rays that were at the leading edge of the fin. This variation in flexural stiffness was associated with variation in joint density and the relative length of the unsegmented proximal base of the fin rays. There was no significant difference in flexural stiffness between fresh and frozen specimens. In specimens preserved with formalin, there is a small but significant effect on stiffness in smaller fin rays.  相似文献   

9.
Ray‐finned fishes actively control the shape and orientation of their fins to either generate or resist hydrodynamic forces. Because of the emergent mechanical properties of their segmented, bilaminar fin rays (lepidotrichia), and actuation by multiple muscles, fish can control the rigidity and curvature of individual rays independently, thereby varying the resultant forces across the fin surfaces. Expecting that differences in fin‐ray morphology should reflect variation in their mechanical properties, we measured several musculoskeletal features of individual spines and rays of the dorsal and anal fins of bluegill sunfish, Lepomis macrochirus, and assessed their mobility and flexibility. We separated the fin‐rays into four groups based on the fin (dorsal or anal) or fin‐ray type (spine or ray) and measured the length of the spines/rays and the mass of the three median fin‐ray muscles: the inclinators, erectors and depressors. Within the two ray groups, we measured the portion of the rays that were segmented vs. unsegmented and branched vs. unbranched. For the majority of variables tested, we found that variations between fin‐rays within each group were significantly related to position within the fin and these patterns were conserved between the dorsal and anal rays. Based on positional variations in fin‐ray and muscle parameters, we suggest that anterior and posterior regions of each fin perform different functions when interacting with the surrounding fluid. Specifically, we suggest that the stiffer anterior rays of the soft dorsal and anal fins maintain stability and keep the flow across the fins steady. The posterior rays, which are more flexible with a greater range of motion, fine‐tune their stiffness and orientation, directing the resultant flow to generate lateral and some thrust forces, thus acting as an accessory caudal fin. J. Morphol., 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

10.
The fins of actinopterygian can regenerate following amputation. Classical papers have shown that the ray, a structural unit of these fins, might regenerate independent of this appendage. Each fin ray is formed by two apposed contralateral hemirays. A hemiray may autonomously regenerate and segmentate in a position-independent manner. This is observed when heterotopically grafted into an interray space, after amputation following extirpation of the contralateral hemiray or when simply ablated. During this process, a proliferating hemiblastema is formed, as shown by bromodeoxyuridine incorporation, from which the complete structure will regenerate. This hemiblastema shows a patterning of gene expression domain similar to half ray blastema. Interactions between contralateral hemiblastema have been studied by recombinant rays composed of hemirays from different origins on the proximo-distal or dorso-ventral axis of the caudal fin. Dye 1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocianine perchlorate labeling of grafted tissues was used as tissular marker. Our results suggest both that there are contralateral interactions between hemiblastema of each ray, and that hemiblastema may vary its morphogenesis, always differentiating as their host region. These non-autonomous, position-dependent interactions control coordinated bifurcations, segment joints and ray length independently. A morphological study of the developing and regenerating fin of another long fin mutant zebrafish suggests that contralateral hemiblastema interactions are perturbed in this mutant.  相似文献   

11.
12.
Activin-betaA signaling is required for zebrafish fin regeneration   总被引:1,自引:0,他引:1  
  相似文献   

13.
Wild-type medaka are known to have remarkable capabilities of fin, or epimorphic, regeneration. However, a hypothyroid mutant, kamaitachi (kmi), frequently suffers from injury in fins, suggesting an important role of thyroid hormone in fin regeneration. This led us to examine the relationship between thyroid hormone and fin regeneration using medaka as a model. For this, we first set up a medaka experimental system in which the rate of regeneration was statistically analyzed after caudal fin amputation under normal and hypothyroid conditions. As expected, the regeneration of amputated caudal fins was delayed in hypothyroid kmi -/- mutants. We then examined wild-type medaka with thiourea-induced hypothyroidism to evaluate the requirement of thyroid hormone during epimorphic fin regeneration. The results demonstrate that the growth rate of regenerates was much reduced in severely hypothyroid medaka throughout the regeneration period. This reduction in regenerative rate was recovered by exogenous administration of L-thyroxine. The present study is thus the first to report the direct involvement of thyroid hormone in teleost fin regeneration, and provides a basic framework for future molecular and genetic analyses.  相似文献   

14.
A new cave‐dwelling loach of the genus Triplophysa, T. xichouensis, is described from an outlet of a subterranean river in Xisa Town, Xichou County, Yunnan Province, China. It can be distinguished from its congeners by the following characters: dorsal‐fin rays iii, 8; anal‐fin rays ii, 6; pectoral‐fin rays i, 9 or 10; pelvic‐fin rays i, 5 or 6; branched caudal‐fin rays 16(8+8); eyes highly degenerated to a very tiny black dot; dorsal‐fin origin closer to snout tip than to caudal‐fin base and anterior to vertical line of pelvic‐fin origin; pectoral fin length about two‐thirds the distance between pectoral‐fin origin to pelvic‐fin origin; caudal peduncle slender, its length about three times its depth; caudal fin emarginate; body smooth and scaleless; lateral line complete and straight; anterior chamber of air bladder wrapped in dumbbell‐shaped bony capsule and the posterior one well developed, long, oval; intestine short, bending in zigzag shape behind stomach. A key for the cave‐dwelling species of Triplophysa is provided. urn:lsid:zoobank.org:pub:9162FFB1‐7911‐47C3‐AE50‐6A00E9590327  相似文献   

15.
Expression of two zebrafish developmental posterior hoxa genes, hoxa11b and hoxa13b, was studied by in situ hybridization during pectoral and caudal fin development and regeneration. Expression was restricted to cells of the bony rays region. During fin development, molecular cytological analysis revealed that a subpopulation of mesenchymal cells expressed these two hoxa genes during their early differentiation in the subapical region of the developing ray. These cells were identified as differentiating dermal bone making cells (scleroblasts). During fin regeneration, hoxa11b and hoxa13b genes are both induced in undifferentiated cells of the distalmost blastema region (DMB) and the proliferating zone (PZ) and later in differentiating bone-forming cells. In addition, the transient regionalization of the hoxa13b expression pattern in differentiated bone-forming cells along the proximodistal axis of the regenerating ray suggests that hoxa13b could participate in ray patterning. This study is the first to establish a correlation between hoxa gene expression and dermal bone cell differentiation.  相似文献   

16.
The origin of cells that generate the blastema following appendage amputation has been a long-standing question in epimorphic regeneration studies. The blastema is thought to originate from either stem (or progenitor) cells or differentiated cells of various tissues that undergo dedifferentiation. Here, we investigate the origin of cells that contribute to the regeneration of zebrafish caudal fin skeletal elements. We provide evidence that the process of lepidotrichia (bony rays) regeneration is initiated as early as 24 hours post-amputation and that differentiated scleroblasts acquire a proliferative state, detach from the lepidotrichia surface, migrate distally, integrate into the blastema and dedifferentiate. These findings provide novel insights into the origin of cells in epimorphic appendage regeneration in zebrafish and suggest conservation of regeneration mechanisms between fish and amphibians.  相似文献   

17.
The study showed that excision of the caudal fin at basal level was followed by complete regeneration in one and a half months, whereas if it was amputated at mid-fin level, complete regeneration took two months. The findings confirm that the greater the extent of amputation, the faster the rate of regeneration. In the case of the pectoral fin, only part of which was removed, it was found that the fin completely regenerated, with recovery of its original pattern, within two months after amputation.  相似文献   

18.
A new species of spinous loach, Cobitis shikokuensis, is described based on 297 specimens from Shikoku Island, Japan. The new species was formerly known as the Shikoku group of Cobitis takatsuensis. It can be distinguished from other species of Cobitis and closely related genera by a combination of the following characters: dorsal fin with 6 branched soft rays; anal fin with 5 branched soft rays; one brownish streak across eye from the tip of nose, no streak on cheek; a black spot smaller than eye diameter near the dorsal corner of the caudal fin base; 3–5 small brownish speckles on ventral side of caudal peduncle; high caudal peduncle with well-developed fleshy keels on dorsal and ventral side; a lamina circularis at base of dorsal part of pectoral fin absent; first branched soft ray of pectoral fin broad in males; pectoral soft rays widely branched from the approximate midpoint; last anal fin ray with 2 elements; interorbital width 11.2–17.1% of head length.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号