首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jeon D  Yang YM  Jeong MJ  Philipson KD  Rhim H  Shin HS 《Neuron》2003,38(6):965-976
The plasma membrane Na(+)/Ca(2+) exchanger (NCX) plays a role in regulation of intracellular Ca(2+) concentration via the forward mode (Ca(2+) efflux) or the reverse mode (Ca(2+) influx). To define the physiological function of the exchanger in vivo, we generated mice deficient for NCX2, the major isoform in the brain. Mutant hippocampal neurons exhibited a significantly delayed clearance of elevated Ca(2+) following depolarization. The frequency threshold for LTP and LTD in the hippocampal CA1 region was shifted to a lowered frequency in the mutant mice, thereby favoring LTP. Behaviorally, the mutant mice exhibited enhanced performance in several hippocampus-dependent learning and memory tasks. These results demonstrate that NCX2 can be a temporal regulator of Ca(2+) homeostasis and as such is essential for the control of synaptic plasticity and cognition.  相似文献   

2.
3.
The senescence-accelerated mouse prone 8 (SAMP8) strain exhibits age-related learning and memory deficits (LMD) at 2 months of age. Combined linkage analysis of 264 F2 intercross SAMP8 × JF1 mice and RNA-seq analysis identified Hcn1 gene out of 29 genes in the LMD region on chromosome 13. Hcn1 in SAMP8 strain showed 15 times less polyglutamine repetition compared to Japanese fancy mouse 1 (JF1). Whole cell patch clamp analysis showed that Hcn1 ion conductivity was significantly lower in SAMP8 compared to that of JF1, which may be associated with learning and memory deficiency.  相似文献   

4.
Polymorphisms in BTBD9 have recently been associated with higher risk of restless legs syndrome (RLS), a neurological disorder characterized by uncomfortable sensations in the legs at rest that are relieved by movement. The BTBD9 protein contains a BTB/POZ domain and a BACK domain, but its function is unknown. To elucidate its function and potential role in the pathophysiology of RLS, we generated a line of mutant Btbd9 mice derived from a commercial gene-trap embryonic stem cell clone. Btbd9 is the mouse homolog of the human BTBD9. Proteins that contain a BTB/POZ domain have been reported to be associated with synaptic transmission and plasticity. We found that Btbd9 is naturally expressed in the hippocampus of our mutant mice, a region critical for learning and memory. As electrophysiological characteristics of CA3-CA1 synapses of the hippocampus are well characterized, we performed electrophysiological recordings in this region. The mutant mice showed normal input-output relationship, a significant impairment in pre-synaptic activity, and an enhanced long-term potentiation. We further performed an analysis of fear memory and found the mutant mice had an enhanced cued and contextual fear memory. To elucidate a possible molecular basis for these enhancements, we analyzed proteins that have been associated with synaptic plasticity. We found an elevated level of dynamin 1, an enzyme associated with endocytosis, in the mutant mice. These results suggest the first identified function of Btbd9 as being involved in regulating synaptic plasticity and memory. Recent studies have suggested that enhanced synaptic plasticity, analogous to what we have observed, in other regions of the brain could enhance sensory perception similar to what is seen in RLS patients. Further analyses of the mutant mice will help shine light on the function of BTBD9 and its role in RLS.  相似文献   

5.
Hu JH  Zhang JF  Ma YH  Jiang J  Yang N  Li XB  Yu Chi ZG  Fei J  Guo LH 《Cell research》2004,14(1):54-59
It is well documented that 7-aminobutyric acid (GABA) system existed in reproductive organs. Recent researches showed that GABAA and GABAB receptors were present in testis and sperm, and might mediate the acrosome reaction induced by GABA and progesterone. GABA transporter I (GAT1) also existed in testis and sperm, but its physiological function was unknown. In the present study, we used GAT1 overexpressing mice to explore GAT1 function in male reproductive system. We found that the expression level of GAT1 continuously increased in wild-type mouse testis from 1 month to 2 months after birth. GAT1 overexpression in mouse affected testis development, which embodied reduced testis mass and slowed spermatogenesis in transgenic mice. Moreover, transgenic mice showed increase of the percentage of broken sperm. The further study revealed that the reproductive capacity was impaired in GAT1 overexpressing mice. In addition, testosterone level was significantly low in transgenic mice compared with that in wild-type mice. Our findings provided the first evidence that abnormal expression of GAT1 could result in dysgenesis,and indicated that GAT1 might be therapeutically targeted for contraception or dysgenesis treatment.  相似文献   

6.
Enhancement of learning and memory in mice by a benzodiazepine antagonist   总被引:1,自引:0,他引:1  
H Lal  B Kumar  M J Forster 《FASEB journal》1988,2(11):2707-2711
Benzodiazepines, a class of drugs widely employed as anxiolytics and anticonvulsants, can induce impairments of learning and memory. The purpose of the present investigation was to determine if a benzodiazepine receptor antagonist, flumazenil (Ro 15-1788), could enhance learning and memory. Pretraining injection of flumazenil (2.5 to 40.0 mg/kg) was found to enhance both learning and memory in a test requiring young mice to discriminate the correct arm of a T-maze to escape mild electric shock. In a second test, which required mice to passively avoid a dark chamber after shock, flumazenil pretreatment prevented the occurrence of amnesia induced by the cholinergic receptor antagonist scopolamine. It is hypothesized that flumazenil may facilitate learning or memory processes by reversing a negative modulatory influence of endogenous diazepam-like ligands for benzodiazepine receptors.  相似文献   

7.
The H2 allele of APOC1, giving rise to increased gene expression of apolipoprotein C-I (apoC-I), is in genetic disequilibrium with the APOE4 allele and may provide a major risk factor for Alzheimer's disease (AD). We found that apoC-I protein is present in astrocytes and endothelial cells within hippocampal regions in both human control and AD brains. Interestingly, apoC-I colocalized with beta-amyloid (Abeta) in plaques in AD brains, and in vitro experiments revealed that aggregation of Abeta was delayed in the presence of apoC-I. Moreover, apoC-I was found to exacerbate the soluble Abeta oligomer-induced neuronal death. To establish a potential role for apoC-I in cognitive functions, we used human (h) APOC1(+/0) transgenic mice that express APOC1 mRNA throughout their brains and apoC-I protein in astrocytes and endothelial cells. The hAPOC1(+/0) mice displayed impaired hippocampal-dependent learning and memory functions compared with their wild-type littermates, as judged from their performance in the object recognition task (P = 0.012) and in the Morris water maze task (P = 0.010). ApoC-I may affect learning as a result of its inhibitory properties toward apoE-dependent lipid metabolism. However, no differences in brain mRNA or protein levels of endogenous apoE were detected between transgenic and wild-type mice. In conclusion, human apoC-I expression impairs cognitive functions in mice independent of apoE expression, which supports the potential of a modulatory role for apoC-I during the development of AD.  相似文献   

8.
9.
Adrenal medullary chromaffin cells are derivatives of the neural crest and are widely believed to share a common sympathoadrenal (SA) progenitor with sympathetic neurons. For decades, the adrenal cortical environment was assumed to be essential for channelling SA progenitors towards an endocrine chromaffin cell fate. Our recent analysis of steroidogenic factor 1(Sf1) −/− mice, which lack an adrenal cortex, has challenged this view: in Sf1 −/− mice chromaffin cells migrate to the correct “adrenal” location and undergo largely normal differentiation. In contrast to Sf1 homozygous mutants, heterozygous animals have an adrenal cortex, which, however, is smaller than in wildtype littermates. We show here that the Sf1 +/− adrenal cortical anlagen attract normal numbers of chromaffin progenitor cells into their vicinity by embryonic day 13.5 (E13.5). Two days later, however, only a few scattered cells with highly immature features have immigrated into the adrenal cortex, whereas the remainder form a coherent cell assembly ectopically located at the medial surface of the gland. These cells appear more mature than the scattered intracortical chromaffin progenitors and express the adrenaline synthesizing enzyme PNMT with a delay of 1 day in comparison with wildtype littermates. Nevertheless, chromaffin progenitor cells undergo a numerical reduction of approximately 30% by E17.5. Together, our data suggest that normal adrenocortical development is critical for the correct immigration of chromaffin progenitors into the cortical anlagen, for the timing of PNMT expression and for the regulation of chromaffin cell numbers.This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 488, TP A6).  相似文献   

10.
Morley JE  Kumar VB  Bernardo AE  Farr SA  Uezu K  Tumosa N  Flood JF 《Peptides》2000,21(12):1761-1767
Senescence accelerated (SAMP8 [P8]) mice develop age-related deficits in memory and learning. We show that increased expression of amyloid precursor protein (APP) and its mRNA in the hippocampus are also age-related. Immunocytochemical data suggest that a critical amount of APP expression may be needed to generate amyloid (Aβ) protein plaques in the hippocampus. Deficits in acquisition and retention test performance were alleviated by administration of antibody to Aβ protein into the cerebral ventricles. This reversal of cognitive deficits provides a link between increased expression of both APP and Aβ protein and learning and memory loss in these mice.  相似文献   

11.
Farr SA  Banks WA  Uezu K  Gaskin FS  Morley JE 《Life sciences》2004,75(23):2775-2785
Dehydroepiandrosterone sulfate (DHEAS) has been reported to improve memory in aged animals and suggested as a treatment for age-related dementias. The SAMP8 mouse, a model of Alzheimer's disease, has an age-related impairment in learning and memory and an increase in brain levels of amyloid precursor protein (APP) and amyloid beta protein (Abeta). Male SAMP8 mice also have a decrease in testosterone, to which DHEA is a precursor. Diabetes has been suggested as a model of aging and to be linked to Alzheimer's disease. Diabetics can have memory deficits and lower DHEAS levels. Here, we examined the effects of chronic oral DHEAS on acquisition and retention for T-maze footshock avoidance in 12 mo male SAMP8 mice and in CD-1 mice with streptozocin-induced diabetes. Learning and memory were improved in aged SAMP8 mice, but not in CD-1 mice with streptozocin-induced diabetes. These findings suggest that DHEAS is more effective in reversing the cognitive impairments associated with overexpression of Abeta than with diabetes.  相似文献   

12.
The hypothesis that lipoprotein association with perlecan is atherogenic was tested by studying atherosclerosis in mice that had a heterozygous deletion of perlecan, the primary extracellular heparan sulfate proteoglycan in arteries. We first studied the expression of perlecan in mouse lesions and noted that this proteoglycan in aorta was found in the subendothelial matrix. Perlecan was also a major component of the lesional extracellular matrix. Mice with a heterozygous deletion had a reduction in arterial wall perlecan expression. Atherosclerosis in these mice was studied after crossing the defect into the apolipoprotein E (apoE) and LDL receptor knockout backgrounds. At 12 weeks, chow-fed apoE null mice with a heterozygous deletion had less atherosclerosis. However, at 24 weeks and in the LDL receptor heterozygous background, the presence of a perlecan knockout allele did not significantly alter lesion size. Thus, it appears that loss of perlecan leads to less atherosclerosis in early lesions. Although this might be attributable to a decrease in lipoprotein retention, it should be noted that perlecan might mediate multiple other processes that could, in sum, accelerate atherosclerosis.  相似文献   

13.
Abstract: cDNA clones representing four pharmacologically distinct GABA transporters (GAT1–GAT4) were previously identified in mouse brain. Two of these, GAT1 and GAT4, were found to be brain specific. We studied GAT1 and GAT4 in the developing rat brain using polyclonal antibodies against recombinant fusion proteins. Patterns of immunoreactivity were very similar in the embryonic and early postnatal stages for both transporters. However, whereas GAT1 immunoreactivity was detected in distinct patterns in gray matter and growing axons, GAT4 immunoreactivity was found in a subset of radial glial cell fascicles. These patterns usually oriented perpendicularly to the axons expressing GAT1. Our results suggest a transient relationship between GAT4-expressing radial glial elements and GAT1-expressing axons. The presence of GAT1 in the cortical marginal zone and the numerous GAT4-positive fascicles observed in the fetal anterior commissure indicate that both transporters may play a role in processes of brain maturation. Because the beginning of expression for both GAT1 and GAT4 correlates with the expression of the α1 subunit of the GABA receptor, the transporters may be connected with the maturation of adult-type GABAergic inhibitory system in the brain.  相似文献   

14.
The present paper describes a quick and efficient method for assessing olfactory discrimination learning in mice. In training mice received trials in which one odor (CS+) was paired with sugar and another odor (CS-) was paired with no sugar. When the mice were subsequently placed in a chamber with CS+ odor at one end and CS- odor at the other, they spent more time digging in CS+ than in CS- odor. In Experiment 2 mice trained with this procedure and tested after 60 days also spent more time digging in CS+ than CS- in the test phase, indicating that this olfactory discrimination task is effective for assessing long-term memory. In addition to the outbred strain of CD1 mice used in Experiments 1 and 2, C57Bl/6NCr/BR and DBA/2NCr/BR mice used in Experiment 3 also acquired this learned odor discrimination. Moreover, Experiment 4 showed that DBA animals were capable of acquiring this odor discrimination after receiving only two training trials (one exposure each to CS+ and CS-) per day for 4 days.  相似文献   

15.
AimsThe effect of an antiepileptic drug on cognitive function is of primary importance with respect to the patient's quality of life. Levetiracetam (LEV) is a novel antiepileptic drug used to treat epilepsy, but its effects on spatial and emotional learning and memory are not yet well understood. The goal of our study was to establish the effects of LEV (17 and 54 mg/kg, intraperitoneally (IP)) on spatial memory retrieval in the Morris water maze test and on acquisition and memory formation in the passive avoidance (PA) test in naive mice.Main methodsThe subjects were adult male BALB/c mice. Spatial learning and memory was established with the Morris water maze (MWM) test. The ‘time spent in escape platforms quadrant’ and the ‘distance to platform’ analyses were measured using a video tracking system to determine spatial memory function. Emotional learning and memory were determined with a one-trial, step-through passive avoidance test.Key findingsIn the MWM test, LEV (17 and 54 mg/kg) neither affected the time spent in the target quadrant nor altered the distance to platform. Moreover, LEV had no effect on swim speed. In the PA task, LEV (17 and 54 mg/kg) significantly prolonged retention latency.SignificanceOur results indicate that LEV did not alter spatial memory retrieval in the MWM test, but it did show some ameliorating effects on acquisition and memory formation in the PA test in naive mice.  相似文献   

16.
Growth hormone (GH) has a significant influence on cognitive performance in humans and other mammals. To understand the influence of altered GH action on cognition, we assessed spatial learning and memory using a Barnes maze (BM) comparing twelve-month old, male, bovine GH (bGH) and GH receptor antagonist (GHA) transgenic mice and their corresponding wild type (WT) littermates. During the acquisition training period in the BM, bGH mice showed increased latency, traveled longer path lengths and made more errors to reach the target than WT mice, indicating significantly poorer learning. Short-term memory (STM) and long-term memory (LTM) trials showed significantly suppressed memory retention in bGH mice when compared to the WT group. Conversely, GHA mice showed significantly better learning parameters (latency, path length and errors) and increased use of an efficient search strategy than WT mice. Our study indicates a negative impact of GH excess and a beneficial effect of the inhibition of GH action on spatial learning and memory and, therefore, cognitive performance in male mice. Further research to elucidate GH's role in brain function will facilitate identifying therapeutic applications of GH or GHA for neuropathological and neurodegenerative conditions.  相似文献   

17.
We previously identified that neuropilin-1 (NP-1) was a co-receptor of vascular endothelial growth factor receptor 2 (VEGFR2) and confirmed that NP-1 knockout mice were embryonic lethal due to impairment of vascular development, while VEGF was reported to be involved in the progression of heart failure. However, it is unknown whether NP-1 has any influence on cardiac function, and it also remains poor understood concerning cardiac expression of NP-1 and its interaction with other VEGF receptors in the heart. Here, we first showed that NP-1 heterozygous mice had significantly higher mortality due to either acute or chronic heart failure in response to left ventricular pressure overload. We also observed that NP-1 mRNA and protein were expressed in both neonatal rat cardiomyocytes and adult murine heart. Furthermore, we found that NP-1 formed complexes with VEGFR1 and VEGFR2, respectively, in cardiomyocytes. These findings suggest that NP-1 should play beneficial role in heart failure.  相似文献   

18.
Brevican is a brain-specific proteoglycan which is found in specialized extracellular matrix structures called perineuronal nets. Brevican increases the invasiveness of glioma cells in vivo and has been suggested to play a role in central nervous system fiber tract development. To study the role of brevican in the development and function of the brain, we generated mice lacking a functional brevican gene. These mice are viable and fertile and have a normal life span. Brain anatomy was normal, although alterations in the expression of neurocan were detected. Perineuronal nets formed but appeared to be less prominent in mutant than in wild-type mice. Brevican-deficient mice showed significant deficits in the maintenance of hippocampal long-term potentiation (LTP). However, no obvious impairment of excitatory and inhibitory synaptic transmission was found, suggesting a complex cause for the LTP defect. Detailed behavioral analysis revealed no statistically significant deficits in learning and memory. These data indicate that brevican is not crucial for brain development but has restricted structural and functional roles.  相似文献   

19.
20.
探究香水莲花提取物(Nymphaea hybrid extract,NHE)对东莨菪碱诱导记忆障碍小鼠的学习记忆能力的影响。采用腹腔注射东莨菪碱建立记忆障碍模型,Morris水迷宫实验测定小鼠空间学习和记忆能力。水迷宫实验结束后,断头处死小鼠,进行生化指标的测定。结果表明,与模型组小鼠相比,NHE干预后,小鼠的逃避潜伏期明显缩短(P <0. 01),目标象限停留时间百分比和穿越平台次数增加(P <0. 05或P <0. 01),小鼠海马和皮质区的SOD和GSH-PX活力显著升高(P <0. 01或P <0. 05),MDA含量极显著降低(P <0. 01),ACh E活性显著降低(P <0. 01),ACh含量增加(P <0. 01或P <0. 05)。同时,免疫印迹结果表明,NHE能够改善东莨菪碱引起小鼠海马和皮质中ERK、CREB磷酸化水平和BDNF蛋白表达的减少。综上,香水莲花提取物可以提高东莨菪碱诱导的记忆障碍小鼠的学习记忆能力,具体机制涉及缓解大脑的氧化应激损伤,平衡胆碱能系统,激活ERK-CREB-BDNF信号通路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号