首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein the discovery of a novel class of aminoheterocyclic Na(v)1.7 antagonists is reported. Hit compound 1 was potent but suffered from poor pharmacokinetics and selectivity. The compact structure of 1 offered a modular synthetic strategy towards a broad structure-activity relationship analysis. This analysis led to the identification of aminopyrazine 41, which had vastly improved hERG selectivity and pharmacokinetic properties.  相似文献   

2.
Clinical genetic data have shown that the product of the SCN9A gene, voltage-gated sodium ion channel Nav1.7, is a key control point for pain perception and a possible target for a next generation of analgesics. Sodium channels, however, historically have been difficult drug targets, and many of the existing structure-activity relationships (SAR) have been defined on pharmacologically modified channels with indirect reporter assays. Herein we describe the discovery, optimization, and SAR of potent aminopyrimidinone Nav1.7 antagonists using electrophysiology-based assays that measure the ligand-receptor interaction directly. Within this series, rapid functionalization at the polysubstituted aminopyrimidinone head group enabled exploration of SAR and of pharmacokinetic properties. Lead optimized N-Me-aminopyrimidinone 9 exhibited improved Nav1.7 potency, minimal off-target hERG liability, and improved rat PK properties.  相似文献   

3.
The NaV1.7 ion channel has garnered considerable attention as a target for the treatment of pain. Herein we detail the discovery and structure-activity relationships of a novel series of biaryl amides. Optimization led to the identification of several state-dependent, potent and metabolically stable inhibitors which demonstrated promising levels of selectivity over NaV1.5 and good rat pharmacokinetics. Compound 18, which demonstrated preferential inhibition of a slow inactivated state of NaV1.7, was advanced into a rat formalin study where upon reaching unbound drug levels several fold over the rat NaV1.7 IC50 it failed to demonstrate a robust reduction in nociceptive behavior.  相似文献   

4.
A novel dipeptidyl peptidase IV inhibitor hit (5, IC50 = 0.86 μM) was structurally derived from our recently disclosed preclinical candidate 4 by replacing the cyanobenzyl with a butynyl based on pharmacophore hybridization. A hit-to-lead optimization effort was then initiated to improve its potency. Most N-substituted analogs exhibited good in vitro activity, and compound 18o (IC50 = 1.55 nM) was identified to be a potent dipeptidyl peptidase IV inhibitor with a significantly improved pharmacokinetic properties (bioavailablity: 41% vs 82.9%; T1/2: 2 h vs 4.9 h).  相似文献   

5.
A novel series of potent and specific alpha(v) integrin antagonists has been obtained by aminoalkyl substitutions on benzocyloheptene acetic acids as a rigid GD bioisostere. The preferred compounds 1-2, 1-3 and 1-8, showed nano- to subnanomolar IC(50) values on alpha(v)beta(3) and alpha(v)beta(5) integrins, with favorable pharmacokinetics.  相似文献   

6.
A series of benzodiazepines and benzazepinones were synthesized and evaluated as potential sodium channel blockers in a functional, membrane potential-based assay. One member of the benzazepinone series, compound 47, displayed potent, state-dependent block of hNa(v)1.7, and was orally efficacious in a rat model of neuropathic pain.  相似文献   

7.
We report on a hit generation and hit-to-lead program of a novel class of glucokinase activators (GKAs). Hit compounds, activators at low glucose concentration only were identified by vHTS. Scaffold modification reliably afforded activators also at high substrate level. Potency was increased by introduction of a hydrogen bond acceptor as proposed by molecular docking. Replacement of the initial alkylene linkers with a rigid 1,2-phenylene motif followed by further studies eventually furnished a series of potent lead compounds exhibiting steep SAR.  相似文献   

8.
We describe a series of pyrazole and isoxazole analogs as antagonists of the alpha(v)beta3 receptor. Compounds showed low to sub-nanomolar potency against alpha(v)beta3, as well as good selectivity against alpha(IIb)beta3. In HT29 cells, most analogs also demonstrated significant selectivity against alpha(v)beta6. Several compounds showed good pharmacokinetic properties in rats, in addition to anti-angiogenic activity in a mouse corneal micropocket model. Compounds were synthesized in a straightforward manner from readily available glutarate precursors.  相似文献   

9.
The LPA(2) protein is overexpressed in many tumor cells. We report the optimization of a series of LPA(2) antagonists using calcium mobilization assay (aequorin assay) that led to the discovery of the first reported inhibitors selective for LPA(2). Key compounds were evaluated in vitro for inhibition of LPA(2) mediated Erk activation and proliferation of HCT-116 cells. These compounds could be used to evaluate the benefits of LPA(2) inhibition both in vitro and in vivo.  相似文献   

10.
Compound 1 (IC50 = 35.2 ± 7.2 μM), a moderate FXR antagonist was discovered via high-throughput screening. Structure–activity relationship studies indicated that the shape and the lipophilicity of the substituents of the aromatic ring affect the activity dramatically, increasing the shape and the lipophilicity of the substituents of the aromatic ring enhances the potency of FXR antagonists. Especially, when the OH at C2 position of the aromatic ring was replaced by the OBn substituent (analog 2b), its activity could be improved to IC50 = 1.1 ± 0.1 μM. Besides, the length of the linker and the tetrazole structure are essential for retaining the activity.  相似文献   

11.
A series of trisubstituted cyclohexanes was designed, synthesized and evaluated as CC chemokine receptor 2 (CCR2) antagonists. This led to the identification of two distinct substitution patterns about the cyclohexane ring as potent and selective CCR2 antagonists. Compound 36 exhibited excellent binding (CCR2 IC50 = 2.4 nM) and functional antagonism (calcium flux IC50 = 2.0 nM and chemotaxis IC50 = 5.1 nM).  相似文献   

12.
Starting with the weak agonist indomethacin, a series of potent, selective CRTh2 (DP(2)) antagonists have been discovered as potential treatments for asthma, allergic rhinitis and other inflammatory diseases.  相似文献   

13.
A series of pyrrolo-benzo-1,4-diazine analogs have been synthesized and displayed potent Nav1.7 inhibitory activity and moderate selectivity over Nav1.5. The syntheses, structure–activity relationships, and selected pharmacokinetic data of these analogs are described. Compound 41 displayed anti-nociceptive efficacy in the rat CFA pain model at 100 mpk oral dosing.  相似文献   

14.
A series of A-region analogues of 2-(3-fluoro-4-methylsufonamidophenyl) propanamide 1 were investigated as TRPV1 antagonists. The analysis of structure-activity relationship indicated that a fluoro group at the 3- (or/and) 5-position and a methylsulfonamido group at the 4-position were optimal for antagonism of TRPV1 activation by capsaicin. The most potent antagonist 6 not only exhibited potent antagonism of activation of hTRPV1 by capsaicin, low pH and elevated temperature but also displayed highly potent antagonism of activation of rTRPV1 by capsaicin. Further studies demonstrated that antagonist 6 blocked the hypothermic effect of capsaicin in vivo, consistent with its in vitro mechanism, and it showed promising analgesic activity in the formalin animal model.  相似文献   

15.
The synthesis and biological evaluation of new potent opioid receptor-like 1 antagonists are presented. A structure–activity relationship (SAR) study of arylpyrazole lead compound 1 obtained from library screening identified compound 31, (1S,3R)-N-{[1-(3-chloropyridin-2-yl)-5-(5-fluoro-6-methylpyridin-3-yl)-4-methyl-1H-pyrazol-3-yl]methyl}-3-fluorocyclopentanamine, which exhibits high intrinsic potency and selectivity against other opioid receptors and hERG potassium channel.  相似文献   

16.
A series of 2-piperidinopiperidine-5-arylthiadiazoles was synthesized and subjected to a structure-activity relationship (SAR) investigation. The potency of this series was improved to the single digit nanomolar range. The key analogs were shown to be free of P450 issues, and they also maintained good ex vivo activity and brain penetration.  相似文献   

17.
A series of indane-type acetamide and propanamide analogues were investigated as TRPV1 antagonists. The analysis of structure–activity relationship indicated that indane A-region analogues exhibited better antagonism than did the corresponding 2,3-dihydrobenzofuran and 1,3-benzodioxole surrogates. Among them, antagonist 36 exhibited potent and selective antagonism toward capsaicin for hTRPV1 and mTRPV1. Further, in vivo studies indicated that antagonist 36 showed excellent analgesic activity in both phases of the formalin mouse pain model and inhibited the pain behavior completely at a dose of 1 mg/kg in the 2nd phase.  相似文献   

18.
The discovery, synthesis and preliminary structure–activity relationships (SARs) of a novel class of CB1 antagonists is described. Initial optimization of benzimidazole-based screening hit 4 led to the identification of ‘inverted’ indole-based lead compound 18c with improved properties versus compound 4 including reduced A log P, improved microsomal stability and improved aqueous solubility. Compound 18c demonstrates in vivo CB1 antagonist efficacy (CB1 agonist induced hypothermia model) and is orally bioavailable in rat.  相似文献   

19.
In the course of the development of an aminobenzimidazole class of human glucagon receptor (hGCGR) antagonists, a novel class of cyclic guanidine hGCGR antagonists was discovered. Rapid N-dealkylation resulted in poor pharmacokinetic profiles for the benchmark compound in this series. A strategy aimed at blocking oxidative dealkylation led to a series of compounds with improved rodent pharmacokinetic profiles. One compound was orally efficacious in a murine glucagon challenge pharmacodynamic model and also significantly lowered glucose levels in a murine diabetes model.  相似文献   

20.
The discovery, structure-activity relationships, and optimization of a novel class of fatty acid synthase (FASN) inhibitors is reported. High throughput screening identified a series of substituted piperazines with structural features that enable interactions with many of the potency-driving regions of the FASN KR domain binding site. Derived from this series was FT113, a compound with potent biochemical and cellular activity, which translated into excellent activity in in vivo models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号