首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The two-hybrid system for the identification of protein-protein interactions was used to screen for proteins that interact in vivo with theSaccharomyces cerevisiae Pkc1 protein, a homolog of mammalian protein kinase C. Four positive clones were isolated that encoded portions of the protein kinase Mkk1, which acts downstream of Pkc1p in thePKC1-mediated signalling pathway. Subsequently, Pkc1p and the otherPKC1 pathway components encoding members of a MAP kinase cascade, Bck1p (a MEKK), Mkk1p, Mkk2p (two functionally homologous MEKs), and Mpk1p (a MAP kinase), were tested pairwise for interaction in the two-hybrid assay. Pkc1p interacted specifically with small N-terminal deletions of Mkk1p, and no interaction between Pkc1p and any of the other known pathway components could be detected. Interaction between Pkc1p and Mkk1p, however, was found to be independent of Mkk1p kinase activity. Bck1p was also found to interact with Mkk1p and Mkk2p, and the interaction required only the predicted C-terminal catalytic domain of Mkk1p. Furthermore, we detected protein-protein interactions between two Bck1p molecules via their N-terminal regions. Finally, Mkk2p and Mpk1p also interacted in the two-hybrid assay. These results suggest that the members of thePKC1-mediated MAP kinase cascade form a complex in vivo and that Pkc1p is capable of directly interacting with at least one component of this pathway.  相似文献   

4.
The two-hybrid system for the identification of protein-protein interactions was used to screen for proteins that interact in vivo with theSaccharomyces cerevisiae Pkc1 protein, a homolog of mammalian protein kinase C. Four positive clones were isolated that encoded portions of the protein kinase Mkk1, which acts downstream of Pkc1p in thePKC1-mediated signalling pathway. Subsequently, Pkc1p and the otherPKC1 pathway components encoding members of a MAP kinase cascade, Bck1p (a MEKK), Mkk1p, Mkk2p (two functionally homologous MEKs), and Mpk1p (a MAP kinase), were tested pairwise for interaction in the two-hybrid assay. Pkc1p interacted specifically with small N-terminal deletions of Mkk1p, and no interaction between Pkc1p and any of the other known pathway components could be detected. Interaction between Pkc1p and Mkk1p, however, was found to be independent of Mkk1p kinase activity. Bck1p was also found to interact with Mkk1p and Mkk2p, and the interaction required only the predicted C-terminal catalytic domain of Mkk1p. Furthermore, we detected protein-protein interactions between two Bck1p molecules via their N-terminal regions. Finally, Mkk2p and Mpk1p also interacted in the two-hybrid assay. These results suggest that the members of thePKC1-mediated MAP kinase cascade form a complex in vivo and that Pkc1p is capable of directly interacting with at least one component of this pathway.  相似文献   

5.
6.
Over a decade ago, the gene STT3 was identified in a staurosporine and temperature sensitivity screen of yeast. Subsequently the product of this gene was shown to be a subunit of the endoplasmic reticulum-localized oligosaccharyl transferase (OT) complex. Although stt3 mutants are known to be staurosporine-sensitive, we found that mutants of other OT subunits (except ost4 Delta) are staurosporine-resistant, which indicates that this phenotype of stt3 mutants is not simply a consequence of their defect in glycosylation, as previously speculated. Staurosporine sensitivity was found to be an allele-specific phenotype restricted to cells harboring mutations in highly conserved residues in the N-terminal domain of the STT3 protein. Cells bearing mutations in one of the cytosolic-oriented loops (amino acids 158-168) in the N terminus of Stt3p were found to be specifically susceptible to staurosporine. Staurosporine is a specific inhibitor of Pkc1p, and a genetic link had previously been suggested between PKC1 and STT3. It is known that overexpression of PKC1 suppresses the staurosporine sensitivity of the stt3 mutants in an allele-specific manner, which is typical of mutants of Pkc1p cascade. It has been shown that the pkc1 null mutant exhibits lowered OT activity. Our results combined with these previous observations indicate that the N-terminal domain of Stt3p may interact with members of the Pkc1p cascade and consequently mutations in this domain result in staurosporine sensitivity. We further speculate that the Pkc1p regulates OT activity through the N-terminal domain of Stt3p, the C-terminal domain of which possesses the recognition and/or catalytic site of the OT complex.  相似文献   

7.
The RHO1 gene in Saccharomyces cerevisiae encodes a homolog of the mammalian RhoA small GTP-binding protein, which is implicated in various actin cytoskeleton-dependent cell functions. In yeast, Rho1p is involved in bud formation. A yeast strain in which RHO1 is replaced with RhoA shows a recessive temperature-sensitive growth phenotype. A dominant suppressor mutant was isolated from this strain. Molecular cloning of the suppressor gene revealed that the mutation occurred at the pseuodosubstrate site of PKC1, a yeast homolog of mammalian protein kinase C. Two-hybrid analysis demonstrated that GTP-Rho1p, but not GDP-Rho1p, interacted with the region of Pkc1p containing the pseudosubstrate site and the C1 domain. MKK1 and MPK1 encode MAP kinase kinase and MAP kinase homologs, respectively, and function downstream of PKC1. A dominant active MKK1-6 mutation or overexpression of MPK1 suppressed the temperature sensitivity of the RhoA mutant. The dominant activating mutation of PKC1 suppressed the temperature sensitivity of the RhoA mutant. The dominant activating mutation of PKC1 suppressed the temperature sensitivity of two effector mutants of RHO1, rho1(F44Y) and rho1(E451), but not that of rho1(V43T). These results indicate that there are at least two signaling pathways regulated by Rho1p and that one of the downstream targets is Pkc1p, leading to the activation of the MAP kinase cascade.  相似文献   

8.
Mitogen-activated protein (MAP) kinases are activated in response to a variety of stimuli through a protein kinase cascade that results in their phosphorylation on tyrosine and threonine residues. The molecular nature of this cascade is just beginning to emerge. Here we report the isolation of a Saccharomyces cerevisiae gene encoding a functional analog of mammalian MAP kinases, designated MPK1 (for MAP kinase). The MPK1 gene was isolated as a dosage-dependent suppressor of the cell lysis defect associated with deletion of the BCK1 gene. The BCK1 gene is also predicted to encode a protein kinase which has been proposed to function downstream of the protein kinase C isozyme encoded by PKC1. The MPK1 gene possesses a 1.5-kb uninterrupted open reading frame predicted to encode a 53-kDa protein. The predicted Mpk1 protein (Mpk1p) shares 48 to 50% sequence identity with Xenopus MAP kinase and with the yeast mating pheromone response pathway components, Fus3p and Kss1p. Deletion of MPK1 resulted in a temperature-dependent cell lysis defect that was virtually indistinguishable from that resulting from deletion of BCK1, suggesting that the protein kinases encoded by these genes function in a common pathway. Expression of Xenopus MAP kinase suppressed the defect associated with loss of MPK1 but not the mating-related defects associated with loss of FUS3 or KSS1, indicating functional conservation between the former two protein kinases. Mutation of the presumptive phosphorylated tyrosine and threonine residues of Mpk1p individually to phenylalanine and alanine, respectively, severely impaired Mpk1p function. Additional epistasis experiments, and the overall architectural similarity between the PKC1-mediated pathway and the pheromone response pathway, suggest that Pkc1p regulates a protein kinase cascade in which Bck1p activates a pair of protein kinases, designated Mkk1p and Mkk2p (for MAP kinase-kinase), which in turn activate Mpk1p.  相似文献   

9.
We have isolated a recessive allele of the yeast protein kinase C gene (PKC1) which promotes an elevated rate of mitotic recombination and confers a temperature-sensitive growth defect. The rate of recombination was increased between genes in direct repeat and at a series of heteroalleles and was dependent upon the RAD52 gene product. The mutant pkc1 allele was sequenced and found to encode a single amino acid change within the catalytic domain. Osmotic stabilizing agents rescued the temperature-sensitive growth defect but not the hyperrecombination phenotype, indicating that the two traits are separable. This separability suggests that the PKC1 gene product (Pkc1p) regulates DNA metabolism by an alternate pathway to that used in the regulation of cell lysis. The regulation of recombination is a previously unidentified role for Pkc1p.  相似文献   

10.
To obtain information on cell wall synthesis and its relationship to morphology, we examined the induction of cell extensions of yeast upon the addition of isoamyl alcohol in osmotically fragile mutants that had mutations in genes related to the cell integrity pathway through activation of the mitogen-activated protein kinase cascade. We found that isoamyl alcohol induces cell extensions in pkc1 deletion mutants but not in mutants with mutations in genes positioned downstream or upstream of the PKC1 gene. These results suggest that Pkc1p functions not only in the integrity pathway but also in the induction. We characterized the elongated cells; many had two or more nuclei. We found no difference in cell surface structure between round and elongated cells from the results of chitin staining and cell wall extraction. Actin cytoskeleton was organized in elongated cells, as well as round cells. Cytochalasin D (0.08 mg/mL) inhibited the formation of actin cable but did not affect the induction of cell extensions.  相似文献   

11.
MKK1/MKK2 and SLT2 ( MPK1 ) are three Saccharomyces cerevisiae genes, coding for protein kinases, that have been postulated to act sequentially as part of the Pkc1p signalling pathway, a phosphorylation cascade essential for cell integrity. By using the 'two-hybrid system' and co-purification experiments on glutathione-agarose beads, we have shown that Slt2p interacts in vivo and in vitro with both Mkk1p and Mkk2p, thus confirming a previous suggestion based on epistasis experiments of the corresponding genes. Plasmid constructs of the SLT2 gene, deleted in the whole C-terminal non-kinase region or part of it, and therefore containing all of the conserved kinase subdomains, were still functional in complementation of the slt2 lytic phenotype and in vivo interaction with Mkk1p and Mkk2p. In contrast, the Slt2p C-terminal domain (162 residues) that carries a glutamine-rich fragment followed by a 16 polyglutamine tract, was shown to be dispensable for complementation and in vivo association with Mkk1p and Mkk2p. We have also demonstrated that the N-terminal putative regulatory domain of these two MAP kinase activators is the main region involved in the interaction with Slt2p.  相似文献   

12.
13.
With the completion of the sequences of entire genomes, the need for functional characterisation of proteins and their domains is becoming acute. Conserved regions within proteins often share overlapping functions but despite this conservation may fulfil quite different tasks in different species. In this work, we investigated the cysteine-rich motif (C1 domain) of yeast protein kinase C (Pkc1p) as a model to establish a test system for domain function. C1 domains activate kinases through binding of either diacylglycerol and/or phosphatidylserine, as in many members of the protein kinase C (PKC) family, or by binding small GTPases, as in Raf kinase. In contrast to other members of the protein kinase C superfamily, Pkc1p of Saccharomyces cerevisiae is activated via binding of the small G-protein Rho1p to its C1 domain. We developed a system for domain shuffling to establish the function of C1 domains from human Raf kinase and rat PKC eta in yeast. Only the C1 domain from Raf kinase enabled the chimeric enzyme to bind Rho1p when substituted for the native yeast domain. Accordingly, a chimeric Pkc1p carrying the C1 from Raf kinase, but not that from PKC eta, was able to partially complement the phenotypes of a yeast pkc1 deletion mutant. We interpret these data as further evidence that interaction with a small GTPase is the main regulatory function of the C1 domain in yeast.  相似文献   

14.
The protein kinase C (PKC) superfamily plays key regulatory roles in numerous cellular processes. Saccharomyces cerevisiae contains a single PKC, Pkc1, whose main function is cell wall integrity maintenance. In this work, we connect the Pkc1 protein to the maintenance of genome integrity in response to genotoxic stresses. Pkc1 and its kinase activity are necessary for the phosphorylation of checkpoint kinase Rad53, histone H2A and Xrs2 protein after deoxyribonucleic acid (DNA) damage, indicating that Pkc1 is required for activation of checkpoint kinases Mec1 and Tel1. Furthermore, Pkc1 electrophoretic mobility is delayed after inducing DNA damage, which reflects that Pkc1 is post-translationally modified. This modification is a phosphorylation event mediated by Tel1. The expression of different mammalian PKC isoforms at the endogenous level in yeast pkc1 mutant cells revealed that PKCδ is able to activate the DNA integrity checkpoint. Finally, downregulation of PKCδ activity in HeLa cells caused a defective activation of checkpoint kinase Chk2 when DNA damage was induced. Our results indicate that the control of the DNA integrity checkpoint by PKC is a mechanism conserved from yeast to humans.  相似文献   

15.
Seven temperature-sensitive cell lysis (cly) mutant strains of Saccharomyces cerevisiae were isolated which lyse at the restrictive temperature on hypotonic but not on osmotically supported medium. The seven mutants fell into four complementation groups, CLY12 to CLY15. The wild-type CLY15 gene was isolated by complementation of the cly15 temperature-sensitive growth defect. Sequence analysis revealed that the complementing DNA fragment encoded a partial PKC1 gene, which has previously been isolated as an S. cerevisiae homolog of mammalian protein kinase C genes (D. E. Levin, F. O. Fields, R. Kunisawa, J. M. Bishop, and J. Thorner, Cell 62:213-224, 1990). Subsequent genetic analysis showed that CLY15 and PKC1 represent identical loci in the yeast genome. A truncated PKC1 gene encoding only the predicted catalytic domain of Pkc1p was able to complement pkc1 mutant strains. Similar to what has been reported recently (D. E. Levin and E. Bartlett-Heubusch, J. Cell Biol. 116:1221-1229, 1992), we observed that cells deleted for the PKC1 gene are viable when grown on osmotically stabilized medium but are osmotically fragile and lyse rapidly after a shift to hypotonic medium. As shown by light and electron microscopic examinations, the delta pkc1 strain exhibits many cells with a strongly elongated bud or chains of incompletely budded cells when grown on solid medium.  相似文献   

16.
BACKGROUND: Protein kinase C (PKC) has attracted considerable attention over the past decade, primarily because of its presumed role in cellular growth control and tumourigenesis. Mammalian cells express at least 10 different isozymes of PKC; it is this complexity that has made elucidating the precise functions of PKC: so difficult. The identification of PKC homologues in organisms such as Drosophila, Xenopus, Dictyostelium, Aplysia and Caenorhabditis indicates that the enzyme is evolutionarily conserved, and this has stimulated our search for counterparts in the yeast Saccharomyces cerevisiae, in which powerful genetic analyses can be used. To date, only one PKC homologue, PKC1, has been identified in yeast and no biochemical activity has been definitively ascribed to the encoded protein. This, and the inability to identify other PKC homologues in yeast by DNA hybridization, has led to doubts about the existence of PKC isozymes in yeast. We have taken the approach of screening yeast expression libraries with anti-PKC antibodies in an attempt to identify further homologues. RESULTS: We have identified a novel PKC isozyme, Pkc2p, encoded by the gene PKC2. We report here the sequence of PKC2 and a comparison showing its similarity to other PKCs. Phylogenetic analysis suggests that all known PKC genes, including PKC2, originated from a common ancestor. Disruption of the PKC2 protein-coding region, deleting the entire catalytic domain of the encoded enzyme, is not lethal to yeast growing on rich media. However, the pkc2 mutant, unlike wild-type strains, fails to grow on minimal media containing limited concentrations of amino acids. This implicates Pkc2p in the response of yeast cells to amino-acid starvation. CONCLUSION: We have shown that yeast cells do express more than one PKC isozyme, by identifying and characterizing a novel PKC gene PKC2, the product of which may be involved in the cellular response to amino-acid starvation.  相似文献   

17.
We employed the constitutive BCK1-20 allele of the gene for the MAP kinase kinase kinase (MAPKKK) in the yeast Pkc signal transduction pathway to develop a genetic screen for mutants in genes encoding upstream components. Transposon mutagenesis yielded a mutant that was completely dependent on the active allele in the absence of osmotic stabilization. The transposon had integrated at the yeast SLG1 (HCS77) locus. This gene encodes a putative membrane protein. Haploid slg1 deletion strains are sensitive to caffeine, as expected for mutants in the Pkc pathway, as well as a variety of other drugs. The response to elevated temperatures and the dependence on osmotic stabilization depends on the genetic background. Thus, in the strain used for mutagenesis, disruption of SLG1 causes the cells to become non-viable in the absence of osmotic stabilization at both 30°?C and 37°?C. In a different genetic background this phenotype was not observed. Sensitivity of the haploid deletion mutants to caffeine can be partially suppressed by overexpression of genes for other components of the Pkc pathway, such as PKC1, SLT2, ROM2, and STE20. In addition, a SLG1-lacZ reporter construct shows higher expression in the presence of caffeine or magnesium chloride in a wild-type diploid background.  相似文献   

18.
Hypertonic shock of Saccharomyces cerevisiae activates the Hog1p MAP kinase cascade. In contrast, protein kinase C (Pkc1p) and the "cell integrity" MAP kinase cascade are critical for the response to hypotonic shock. We observed that hypertonic shock transiently relocated many, but not all, nuclear and nucleolar proteins to the cytoplasm. We hypothesized that the relocation of nuclear proteins was due to activation of the Hog1p kinase cascade, yet, surprisingly, Hog1p was not required for these effects. In contrast, Pkc1p kinase activity was required, although the Pkc1p MAP kinase cascade and several factors known to lie upstream and downstream of Pkc1p were not. Moreover, sudden induction of a hyperactive form of Pkc1p was sufficient to relocate nuclear proteins. Taken together, these observations show that the scope of involvement of Pkc1p in the organization of the nucleus considerably exceeds what has been characterized previously. The relocation of nuclear proteins is likely to account for the profound inhibition of RNA synthesis that was observed during hypertonic shock.  相似文献   

19.
20.
Park H  Lennarz WJ 《Glycobiology》2000,10(7):737-744
Oligosaccharyltransferase (OT) in Saccharomyces cerevisiae is an enzyme complex consisting of 8 transmembrane proteins located in the endoplasmic reticulum (ER). Studies on potential protein-protein interactions in OT using a two-hybrid library screen revealed that protein kinase C (Pkc1p) interacted with the lumenal domains of several OT subunits. Additional genetic experiments revealed that overexpression of two OT subunits rescued the growth defect caused by overexpression of a Pkc1 active site mutant, implying that there are specific genetic interactions between PKC1 and OT. These in vivo findings were complemented by in vitro studies that showed that several of the OT subunits bound to a fusion protein consisting of glutathione S-transferase linked via its C-terminus to Pkc1p. Assays of OT activity, in which glycosylation of a simple acceptor peptide was assayed in microsomes from wild-type and a pkc1 null revealed a 50% reduction in activity in the microsomes from the null strain. In contrast, strains containing null mutations of two other genes known to be downstream of Pkc1p in the PKC1-MAP kinase pathway had a level of OT activity comparable to that of wild-type cells. These in vivo and in vitro experiments suggest that in yeast cells Pkc1p may be involved in regulation of the N-glycosylation of proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号