首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factor (FGF) signalling regulates essential developmental processes in vertebrates and invertebrates, but its role during early metazoan evolution remains obscure. Here, we analyse the function of FGF signalling in a non-bilaterian animal, the sea anemone Nematostella vectensis. We identified the complete set of FGF ligands and FGF receptors, of which two paralogous FGFs (NvFGFa1 and NvFGFa2) and one FGF receptor (NvFGFRa) are specifically coexpressed in the developing apical organ, a sensory structure located at the aboral pole of ciliated larvae from various phyla. Morpholino-mediated knockdown experiments reveal that NvFGFa1 and NvFGFRa are required for the formation of the apical organ, whereas NvFGFa2 counteracts NvFGFRa signalling to prevent precocious and ectopic apical organ development. Marker gene expression analysis shows that FGF signalling regulates local patterning in the aboral region. Furthermore, NvFGFa1 activates its own expression and that of the antagonistic NvFGFa2, thereby establishing positive- and negative-feedback loops. Finally, we show that loss of the apical organ upon NvFGFa1 knockdown blocks metamorphosis into polyps. We propose that the control of the development of sensory structures at the apical pole of ciliated larvae is an ancestral function of FGF signalling.  相似文献   

2.
3.
FGF signalling controls the timing of Pax6 activation in the neural tube   总被引:3,自引:0,他引:3  
We have recently demonstrated that Pax6 activation occurs in phase with somitogenesis in the spinal cord. Here we show that the presomitic mesoderm exerts an inhibitory activity on Pax6 expression. This repressive effect is mediated by the FGF signalling pathway. The presomitic mesoderm displays a decreasing caudorostral gradient of FGF8, and grafting FGF8-soaked beads at the level of the neural tube abolishes Pax6 activation. Conversely, when FGF signalling is disrupted, Pax6 is prematurely activated in the neural plate. We propose that the progression of Pax6 activation in the neural tube is controlled by the caudal regression of the anterior limit of FGF activity. Hence, as part of its posteriorising activity, FGF8 downregulation acts as a switch from early (posterior) to a later (anterior) state of neural epithelial development.  相似文献   

4.
Fibroblast growth factor (FGF) signalling plays a key role in early embryonic development and cell migration in vertebrates and in invertebrates. To gain novel insights into FGF signalling in an arthropod, we characterized the fgf1b ortholog in the beetle Tribolium that is not represented in the Drosophila genome.  相似文献   

5.
Myat MM  Andrew DJ 《Cell》2002,111(6):879-891
Formation of tubes of the correct size and shape is essential for viability of most organisms, yet little is understood of the mechanisms controlling tube morphology. We identified a new allele of hairy in a mutagenesis screen and showed that hairy mutations cause branching and bulging of the normally unbranched salivary tube, in part through prolonged expression of huckebein (hkb). HKB controls polarized cell shape change and apical membrane growth during salivary cell invagination via two downstream target genes, crumbs (crb), a determinant of the apical membrane, and klarsicht (klar), which mediates microtubule-dependent organelle transport. In invaginating salivary cells, crb and klar mediate growth and delivery of apical membrane, respectively, thus regulating the size and shape of the salivary tube.  相似文献   

6.
The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) and phosphatidylinositol-3-OH kinase (PI3K)/Akt pathways are involved in the regulatory mechanisms of several cellular processes including proliferation, differentiation and apoptosis. Here we show that during chick, mouse and zebrafish limb/fin development, a known MAPK/ERK regulator, Mkp3, is induced in the mesenchyme by fibroblast growth factor 8 (FGF8) signalling, through the PI3K/Akt pathway. This correlates with a high level of phosphorylated ERK in the apical ectodermal ridge (AER), where Mkp3 expression is excluded. Conversely, phosphorylated Akt is detected only in the mesenchyme. Constitutively active Mek1, as well as the downregulation of Mkp3 by small interfering RNA (siRNA), induced apoptosis in the mesenchyme. This suggests that MKP3 has a key role in mediating the proliferative, anti-apoptotic signalling of AER-derived FGF8.  相似文献   

7.
Expression of the gene encoding the MKP-3/Pyst1 protein phosphatase, which inactivates ERK MAPK, is induced by FGF. However, which intracellular signalling pathway mediates this expression is unclear, with essential roles proposed for both ERK and PI(3)K in chick embryonic limb. Here, we report that MKP-3/Pyst1 expression is sensitive to inhibition of ERK or MAPKK, that endogenous MKP-3/Pyst1 co-localizes with activated ERK, and expression of MKP-3/Pyst1 in mice lacking PDK1, an essential mediator of PI(3)K signalling. We conclude that MKP-3/Pyst1 expression is mediated by ERK activation and that negative feedback control predominates in limiting the extent of FGF-induced ERK activity.  相似文献   

8.
Our present understanding implicates both calmodulin (CaM) and 3',5'-cyclicAMP (cAMP) in the regulation of pollen tube growth. However, downstream molecules of these signalling pathways and the cellular processes they modulate remain largely unknown. In order to elucidate the role of CaM, we mapped its activity in growing pollen tubes. 2-chloro-(epsilon-amino-Lys(75))-[6-4-(N,N'-diethylaminophenyl)-1,3,5-triazin-4-yl]-calmodulin (TA-CaM) and fluorescein-calmodulin (FL-CaM), fluorescent analogues of CaM, were loaded into pollen tubes and CaM activity was mapped by fluorescence ratio imaging. It was found that CaM activity exhibits a tip-focused gradient, similar to the distribution of cytosolic-free calcium ([Ca(2+)](c)). In long pollen tubes, apical CaM activity was also found to oscillate with a period similar to [Ca(2+)](c) (40-80 sec). This oscillatory behaviour was not observed in small pollen tubes or in tubes that had stopped growing. Changes in CaM activity within the dome of the pollen tube apex resulting from the photolysis of caged photolysis of RS-20 (a peptide antagonist of CaM) induced re-orientation of the growth axis, suggesting that CaM is also involved in the guidance mechanism. CaM activity was strongly modulated by intracellular changes in cAMP (induced by activators and antagonists of adenylyl cyclase). These results indicate that the action of this protein is dependent not solely on [Ca(2+)](c) but also on a cross-talk with other signalling pathways. A putative target of this cross-talk is the secretory machinery as observed in pollen tubes loaded with the FM (N-(3-triethylammoniumpropyl)-4-(4-dibutylamino)styryl)pyridinium dibromide 1-43 dye and exposed to different antagonists and activators of these molecules. Our data thus suggest that pollen tube growth and orientation depend on an intricate cross-talk between multiple signalling pathways in which CaM is a key element.  相似文献   

9.
Networks of epithelial and endothelial tubes are essential for the function of organs such as the lung, kidney and vascular system. The sizes and shapes of these tubes are highly regulated to match their individual functions. Defects in tube size can cause debilitating diseases such as polycystic kidney disease and ischaemia. It is therefore critical to understand how tube dimensions are regulated. Here we identify the tyrosine kinase Src as an instructive regulator of epithelial-tube length in the Drosophila tracheal system. Loss-of-function Src42 mutations shorten tracheal tubes, whereas Src42 overexpression elongates them. Surprisingly, Src42 acts distinctly from known tube-size pathways and regulates both the amount of apical surface growth and, with the conserved formin dDaam, the direction of growth. Quantitative three-dimensional image analysis reveals that Src42- and dDaam-mutant tracheal cells expand more in the circumferential than the axial dimension, resulting in tubes that are shorter in length-but larger in diameter-than wild-type tubes. Thus, Src42 and dDaam control tube dimensions by regulating the direction of anisotropic growth, a mechanism that has not previously been described.  相似文献   

10.
11.
The sensory nervous system in the vertebrate head arises from two different cell populations: neural crest and placodal cells. By contrast, in the trunk it originates from neural crest only. How do placode precursors become restricted exclusively to the head and how do multipotent ectodermal cells make the decision to become placodes or neural crest? At neural plate stages, future placode cells are confined to a narrow band in the head ectoderm, the pre-placodal region (PPR). Here, we identify the head mesoderm as the source of PPR inducing signals, reinforced by factors from the neural plate. We show that several independent signals are needed: attenuation of BMP and WNT is required for PPR formation. Together with activation of the FGF pathway, BMP and WNT antagonists can induce the PPR in na?ve ectoderm. We also show that WNT signalling plays a crucial role in restricting placode formation to the head. Finally, we demonstrate that the decision of multipotent cells to become placode or neural crest precursors is mediated by WNT proteins: activation of the WNT pathway promotes the generation of neural crest at the expense of placodes. This mechanism explains how the placode territory becomes confined to the head, and how neural crest and placode fates diversify.  相似文献   

12.
Phytosulfokine (PSK) is a peptide growth factor that requires tyrosine sulfation carried out by tyrosylprotein sulfotransferase (TPST) for its activity. PSK is processed from precursor proteins encoded by five genes in Arabidopsis thaliana and perceived by receptor kinases encoded by two genes in Arabidopsis. pskr1‐3 pskr2‐1 and tpst‐1 knockout mutants displayed reduced seed production, indicative of a requirement for PSK peptide signaling in sexual plant reproduction. Expression analysis revealed PSK precursor and PSK receptor gene activity in reproductive organs with strong expression of PSK2 in pollen. In support of a role for PSK signaling in pollen, in vitro pollen tube (PT) growth was enhanced by exogenously added PSK while PTs of pskr1‐3 pskr2‐1 and of tpst‐1 were shorter. In planta, growth of wild‐type pollen in pskr1‐3 pskr2‐1 and tpst‐1 flowers appeared slower than growth in wild‐type flowers. But PTs did eventually reach the base of the style, suggesting that PT elongation rate may not be responsible for the reduced fertility. Detailed analysis of anthers, style and ovules did not reveal obvious developmental defects. By contrast, a high percentage of unfertilized ovules in pskr1‐3 pskr2‐1 and in tpst‐1 siliques displayed loss of funicular PT guidance, suggesting that PSK signaling is required to guide the PT from the transmitting tract to the embryo sac. Cross‐pollination experiments with wild‐type, pskr1‐3 pskr2‐1 and tpst‐1 male and female parents revealed that both the PT and the female sporophytic tissue and/or female gametophyte contribute to successful PT guidance via PSK signaling and to fertilization success.  相似文献   

13.
14.

Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  相似文献   

15.
In flowers of Nicotiana tabacum L., pollination induces a transient increase in ethylene production by the pistil. The characteristic dynamics of the increase in ethylene correspond to the main steps of the pollen-tube journey into the pistil: penetration into the stigma, growth through the style, entry into the ovary and fertilization. Ethylene is synthesized de novo in the pistil, and its production is reduced in the dark. Ethylene production was monitored in tobacco flowers after pollination with incongruous pollen from three different Nicotiana species, N. rustica, N. repanda and N. trigonophylla, and with pollen from Petunia hybrida. Pollen from all of these different sources can germinate on the stigma surface but each pollen type shows a different behavior and efficiency in penetrating the pistil tissues. Thus, these different crosses provided a model with which to study the response of the pistil to pollination and fertilization. Ethylene evolution upon pollination in tobacco differed in each cross, suggesting that ethylene is correlated with the response to pollen tube growth in the tobacco flower.  相似文献   

16.
During vertebrate limb development, the apical ectodermal ridge (AER) plays a vital role in both limb initiation and distal outgrowth of the limb bud. In the early chick embryo the prelimb bud mesoderm induces the AER in the overlying ectoderm. However, the direct inducer of the AER remains unknown. Here we report that FGF7 and FGF10, members of the fibroblast growth factor family, are the best candidates for the direct inducer of the AER. FGF7 induces an ectopic AER in the flank ectoderm of the chick embryo in a different manner from FGF1, -2, and -4 and activates the expression of Fgf8, an AER marker gene, in a cultured flank ectoderm without the mesoderm. Remarkably, FGF7 and FGF10 applied in the back induced an ectopic AER in the dorsal median ectoderm. Our results suggest that FGF7 and FGF10 directly induce the AER in the ectoderm both of the flank and of the dorsal midline and that these two regions have the competence for AER induction. Formation of the AER of the dorsal median ectoderm in the chick embryo is likely to appear as a vestige of the dorsal fin of the ancestors.  相似文献   

17.
Role of plasma membrane redox activities in elongation growth in plants   总被引:4,自引:0,他引:4  
Comparing isolated plasma membrane vesicles and excised hypocotyl segments from etiolated seedlings of soybean [ Glycine max (L.) Merr. cv. Williams], certain antiproliferative agents that inhibited growth inhibited plasma membrane redox activities. Additionally, auxins that stimulated growth stimulated plasma membrane redox activities. Hormone stimulation was restricted to NADH oxidase (determined from disappearance of NADH) and was given both by isolated plasma membranes and by a soluhilizedenzyme preparation. Comparing IAA, the native auxin regulator, and 2,4-D, a synthetic regulator, stimulation was observed, hut the dose-response curves were different. Yet, the dose-response relationships of both stimulation of auxin growth and stimulation of NADH oxidase were parallel. Inhibition of auxin-induced growth by antiproliferative drugs was more complex. Some, like actinomycin D, preferentially inhibited NADH oxidase (EC 1.6.99.2) but inhibited NADH-ferricya-nide oxido-reductase (EC 1.6.99.3) as well. Others, like adriamycin, inhibited primarily the NADH-ferricyanide oxido-reductase. Therefore, growth control by auxin appeared to involve NADH oxidase as a rate-limiting terminal oxidase to link electron flow from NADH to oxygen. This observation may provide a fundamental difference from animal cells. With the latter, impermeant electron acceptors such as diferric transferrin or ferricyanide fulfill such a role. In plants, these impermeant electron acceptors were without effect on growth or were growth inhibitory.  相似文献   

18.
Construction of the trunk/caudal region of the vertebrate embryo involves a set of distinct molecules and processes whose relationships are just coming into focus. In addition to the subdivision of the embryo into head and trunk domains, this "caudalisation" process requires the establishment and maintenance of a stem zone. This sequentially generates caudal tissues over a long period which then undergo differentiation and patterning in the extending body axis. Here we review recent studies that show that changes in the signalling properties of the paraxial mesoderm act as a switch that controls onset of differentiation and pattern in the spinal cord. These findings identify distinct roles for different caudalising factors; in particular, Fibroblast Growth Factor (FGF) inhibits differentiation in the caudal stem zone, while Retinoic acid (RA) provided rostrally by somitic mesoderm is required for neuronal differentiation and establishment of ventral neural pattern. Furthermore, the mutual opposition of FGF and RA pathways controls not only neural differentiation but also mesoderm segmentation and might also underlie the progressive assignment of rostrocaudal identity by regulating Hox gene availability and activation.  相似文献   

19.
NADH-ferricyanide oxido-reductase (EC 1,6,99,3) of purified plasma membrane vesicles isolated by aqueous two-phase partition from segments of etiolated soybean [ Glycine max (L.) Merr. cv. Williams] hypocotyls was used as a measure of plasma membrane redox activity. Elongation growth of hypocotyl segments floated on the solutions was determined in parallel. Cis -platinum (II) diammine dichloride ( cis -platin), adriamycin and p -nitrophenylacetate, agents known to inhibit cell proliferation and plasma membrane redox activities in mammalian cells inhibited both NADH-ferricyanide oxido-reductase of the isolated membrane vesicles and elongation growth of intact hypocotyl segments. Auxin(2,4-dichlorophenoxyacetic acid)-induced growth of the isolated segments was inhibited preferentially at drug concentrations where control growth was affected only slightly. The findings suggest a connection between plasma membrane redox reactions and the control of elongation growth in plants.  相似文献   

20.
We have examined the effect of human basic fibroblast growth factor (bFGF) on the proliferation of human neuroblastoma cells with normal and enhanced MYCN oncogene expression. bFGF stimulated the proliferation of the neuroblastoma cells with enhanced, but not normal, MYCN expression. Both cell species express FGFR-1, but not FGFR-2, receptors and both harbor FGF receptor species of Mr 145.000, but they differ in their pattern of lower and higher-molecular weight FGF receptor species. Our results demonstrate that enhanced MYCN expression confers to neuroblastoma cells the ability to respond to bFGF, possibly by inducing functional FGF receptors. This mechanism may contribute to the advanced malignant phenotype of human neuroblastomas with enhanced MYCN expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号