首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Abdel Ghany AG  Zaki EA 《Planta》2002,216(2):351-353
Eukaryotic genomes harbor mobile genetic elements known as long terminal repeat (LTR) retrotransposons. LTR retrotransposons are closely related to the infectious and endogenous retroviruses. The viral envelope (env) gene of the retroviruses, which is responsible for their infective properties, distinguishes them from the LTR retrotransposons. Here, we report the cloning and sequencing of an envelope-like gene in Gossypium, implying that enveloped retroviruses are not limited to animals.  相似文献   

4.
Long terminal repeat (LTR) retrotransposons and endogenous retroviruses (ERVs) are transposable elements in eukaryotic genomes well suited for computational identification. De novo identification tools determine the position of potential LTR retrotransposon or ERV insertions in genomic sequences. For further analysis, it is desirable to obtain an annotation of the internal structure of such candidates. This article presents LTRdigest, a novel software tool for automated annotation of internal features of putative LTR retrotransposons. It uses local alignment and hidden Markov model-based algorithms to detect retrotransposon-associated protein domains as well as primer binding sites and polypurine tracts. As an example, we used LTRdigest results to identify 88 (near) full-length ERVs in the chromosome 4 sequence of Mus musculus, separating them from truncated insertions and other repeats. Furthermore, we propose a work flow for the use of LTRdigest in de novo LTR retrotransposon classification and perform an exemplary de novo analysis on the Drosophila melanogaster genome as a proof of concept. Using a new method solely based on the annotations generated by LTRdigest, 518 potential LTR retrotransposons were automatically assigned to 62 candidate groups. Representative sequences from 41 of these 62 groups were matched to reference sequences with >80% global sequence similarity.  相似文献   

5.
6.
LTR retrotransposons and retroviruses are closely related. Although a viral envelope gene is found in some LTR retrotransposons and all retroviruses, only the latter show infectivity. The identification of Ty3‐gypsy‐like retrotransposons possessing putative envelope‐like open reading frames blurred the taxonomical borders and led to the establishment of the Errantivirus, Metavirus and Chromovirus genera within the Metaviridae. Only a few plant Errantiviruses have been described, and their evolutionary history is not well understood. In this study, we investigated 27 retroelements of four abundant Elbe retrotransposon families belonging to the Errantiviruses in Beta vulgaris (sugar beet). Retroelements of the Elbe lineage integrated between 0.02 and 5.59 million years ago, and show family‐specific variations in autonomy and degree of rearrangements: while Elbe3 members are highly fragmented, often truncated and present in a high number of solo LTRs, Elbe2 members are mainly autonomous. We observed extensive reshuffling of structural motifs across families, leading to the formation of new retrotransposon families. Elbe retrotransposons harbor a typical envelope‐like gene, often encoding transmembrane domains. During the course of Elbe evolution, the additional open reading frames have been strongly modified or independently acquired. Taken together, the Elbe lineage serves as retrotransposon model reflecting the various stages in Errantivirus evolution, and allows a detailed analysis of retrotransposon family formation.  相似文献   

7.
8.
The terminal sequences of long-terminal repeat (LTR) retrotransposons are a source of powerful molecular markers for linkage mapping and biodiversity studies. The major factor limiting the widespread application of LTR retrotransposon-based molecular markers is the availability of new retrotransposon terminal sequences. We describe a PCR-based method for the rapid isolation of LTR sequences of Ty1-copia group retrotransposons from the genomic DNA of potentially any higher plant species. To demonstrate the utility of this technique, we have identified a variety of new retrotransposon LTR sequences from pea, broad bean and Norway spruce. Primers specific for three pea LTRs have been used to reveal polymorphisms associated with the corresponding retrotransposons within the Pisum genus.  相似文献   

9.
Semin BV  Il'in IuV 《Genetika》2005,41(4):542-548
Current views of retrotransposons possessing long terminal repeats (LTRs) are described. The existing classification and element types isolated by genome organization are considered. Experimental data are summarized to demonstrate that the replicative cycle of a retrotransposon is not restricted to a single cell and that LTR retrotransposons are transferred between somatic cells with a rate comparable with the element transposition rate within the genome of one cell. The major mechanisms mediating the role of LTR retrotransposons in reorganization of the genome are considered with regard to the strategies of their horizontal and vertical transfer.  相似文献   

10.
11.
Long terminal repeat (LTR) retrotransposons are closely related to retroviruses, and their activities shape eukaryotic genomes. Here, we present a complete Lotus japonicus insertion mutant collection generated by identification of 640 653 new insertion events following de novo activation of the LTR element Lotus retrotransposon 1 (LORE1) ( http://lotus.au.dk ). Insertion preferences are critical for effective gene targeting, and we exploit our large dataset to analyse LTR element characteristics in this context. We infer the mechanism that generates the consensus palindromes typical of retroviral and LTR retrotransposon insertion sites, identify a short relaxed insertion site motif, and demonstrate selective integration into CHG‐hypomethylated genes. These characteristics result in a steep increase in deleterious mutation rate following activation, and allow LORE1 active gene targeting to approach saturation within a population of 134 682 L. japonicus lines. We suggest that saturation mutagenesis using endogenous LTR retrotransposons with germinal activity can be used as a general and cost‐efficient strategy for generation of non‐transgenic mutant collections for unrestricted use in plant research.  相似文献   

12.
蒋爽  滕元文  宗宇  蔡丹英 《西北植物学报》2013,33(11):2354-2360
反转录转座子是真核生物基因组中普遍存在的一类可移动的遗传因子,它们以RNA为媒介,在基因组中不断自我复制。在高等植物中,反转录转座子是基因组的重要成分之一。反转录转座子可以分为5大类型,其中以长末端重复(LTR)类型报道较多。LTR类型由于其首尾具有长末端重复序列,内部含有PBS、PPT、GAG和POL开放阅读框、TSD等结构,可以采用生物信息学软件进行预测。LTR反转录转座子的活性受到自身甲基化和环境因素的影响,DNA甲基化抑制反转录转座子转座,而外界环境的刺激能够激活转座子,从而影响插入位点周边基因的表达。同时由于LTR反转录转座子在植物中普遍存在,丰富的拷贝数以及多态性为新型分子标记(RBIP、SSAP、IRAP、REMAP)的开发提供了良好的素材。该文对近年来国内外有关植物反转录转座子的类型、结构特征、 LTR反转录转座子的活性及其影响因素、 LTR反转录转座子的预测以及标记开发等方面的研究进展进行综述。  相似文献   

13.
Eukaryotic and prokaryotic genomes encode either Type I or Type II Ribonuclease H (RNH) which is important for processing RNA primers that prime DNA replication in almost all organisms. This review highlights the important role that Type I RNH plays in the life cycle of many retroelements, and its utility in tracing early events in retroelement evolution. Many retroelements utilize host genome-encoded RNH, but several lineages of retroelements, including some non-LTR retroposons and all LTR retrotransposons, encode their own RNH domains. Examination of these RNH domains suggests that all LTR retrotransposons acquired an enzymatically weak RNH domain that is missing an important catalytic residue found in all other RNH enzymes. We propose that this reduced activity is essential to ensure correct processing of the polypurine tract (PPT), which is an important step in the life cycle of these retrotransposons. Vertebrate retroviruses appear to have reacquired their RNH domains, which are catalytically more active, but their ancestral RNH domains (found in other LTR retrotransposons) have degenerated to give rise to the tether domains unique to vertebrate retroviruses. The tether domain may serve to control the more active RNH domain of vertebrate retroviruses. Phylogenetic analysis of the RNH domains is also useful to "date" the relative ages of LTR and non-LTR retroelements. It appears that all LTR retrotransposons are as old as, or younger than, the "youngest" lineages of non-LTR retroelements, suggesting that LTR retrotransposons arose late in eukaryotes.  相似文献   

14.
Long terminal repeat (LTR) retrotransposons constitute a significant portion of most eukaryote genomes and can dramatically change genome size and organization. Although LTR retrotransposon content variation is well documented, the dynamics of genomic flux caused by their activity are poorly understood on an evolutionary time scale. This is primarily because of the lack of an experimental system composed of closely related species whose divergence times are within the limits of the ability to detect ancestrally related retrotransposons. The genus Oryza, with 24 species, ten genome types, different ploidy levels and over threefold genome size variation, constitutes an ideal experimental system to explore genus-level transposon dynamics. Here we present data on the discovery and characterization of an LTR retrotransposon family named RWG in the genus Oryza. Comparative analysis of transposon content (approximately 20 to 27,000 copies) and transpositional history of this family across the genus revealed a broad spectrum of independent and lineage-specific changes that have implications for the evolution of genome size and organization. In particular, we provide evidence that the basal GG genome of Oryza (O. granulata) has expanded by nearly 25% by a burst of the RWG lineage Gran3 subsequent to speciation. Finally we describe the recent evolutionary origin of Dasheng, a large retrotransposon derivative of the RWG family, specifically found in the A, B and C genome lineages of Oryza.  相似文献   

15.
16.
Current views of retrotransposons possessing long terminal repeats (LTRs) are described. The existing classification and element types isolated by genome organization are considered. Experimental data are summarized to demonstrate that the replicative cycle of a retrotransposon is not restricted to a single cell and that LTR retrotransposons are transferred between somatic cells with a rate comparable with the element transposition rate within the genome of one cell. The major mechanisms mediating the role of LTR retrotransposons in reorganization of the genome are considered with regard to the strategies of their horizontal and vertical transfer.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 542–548.Original Russian Text Copyright © 2005 by Syomin, Ilyin.  相似文献   

17.
18.
Cellular genes comprise at most 5% of the barley genome; the rest is occupied primarily by retrotransposons. Retrotransposons move intracellularly by a replicative mechanism similar to that of retroviruses. We describe the major classes of retrotransposons in barley, including the two nonautonomous groups that were recently identified, and detail the evidence supporting our current understanding of their life cycle. Data from analyses of long contiguous segments of the barley genome, as well as surveys of the prevalence of full-length retrotransposons and their solo LTR derivatives in the genus Hordeum, indicate that integration and recombinational loss of retrotransposons are major factors shaping the genome. The sequence conservation and integrative capacity of barley retrotransposons have made them excellent sources for development of molecular marker systems.  相似文献   

19.
Mugnier N  Gueguen L  Vieira C  Biémont C 《Gene》2008,411(1-2):87-93
Transposable elements, which are major components of most genomes, are known to accumulate in heterochromatic regions in which they have progressively diverged in sequence by mutations and internal deletions and insertions (indels) during the course of evolution. They therefore provide a record of the genomic events that have shaped the genomes, some of which could correspond to speciation events. Using the sequence divergence between the long terminal repeats (LTRs), we estimated the date of the insertion events of the LTR retrotransposon copies embedded within the heterochromatin regions of the Drosophila melanogaster genome. We did not detect traces of any specific waves of mobilization of retrotransposons within heterochromatin, apart from a very recent wave, which corresponds to the numerous LTR retrotransposon copies found in euchromatin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号