首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyrotropin-releasing hormone (TRH) is present in small quantities in the rat adult pancreas. As hypothyroidism increases dramatically the pancreatic content of this peptide, this model was used to localize TRH in the gland by immunocytochemistry. Immunocytochemical staining of semithin (0.5–1.0 μm) and thin (golden) sections was performed as well as antibody and method controls to check the specificity of the immunoperoxidase staining. At the light microscope level, a very faint TRH-like immunoreactivity was apparent in the pancreas of normal untreated animals. In hypothyroid rats, a strong TRH immunostaining was observed in the central portion of the islets of Langerhans. On the contrary, in previously hypothyroid rats made euthyroid, no TRH-like immunoreactivity was found. Serial sections alternately labelled with TRH and insulin antisera revealed the simultaneous occurrence of both immunoreactivities. In addition, the TRH immunoreactive cells were distinct from glucagon- or somatostatin-containing cells. At the electron microscope level, immunoreactive TRH was found over the secretory granules of insulin-containing cells. Hypothyroid animals offer therefore a suitable model for the study of TRH in the pancreas.  相似文献   

2.
In rat pituitary GH3 cells, thyrotropin-releasing hormone (TRH) down-regulates TRH receptor (TRH-R) mRNA (Fujimoto, J., Straub, R.E., and Gershengorn, M.C. (1991) Mol. Endocrinol. 5, 1527-1532), at least in part, by stimulating its degradation (Fujimoto, J., Narayanan, C.S., Benjamin, J.E., Heinflink, M., and Gershengorn, M.C. (1992) Endocrinology 130, 1879-1884). Here we show that TRH regulates RNase activity in GH3 cells and that specific mRNA sequences are needed for in vivo regulation of TRH-R mRNA by TRH. TRH affected RNase activity in a biphasic manner with rapid stimulation (by 10 min) followed by a decrease to a rate slower than in control lysates within 6 h. This time course paralleled the effects of TRH on degradation of TRH-R mRNA in vivo. The regulated RNase activity was in a polysome-free fraction of the lysates and was not specific for TRH-R RNA. A truncated form of TRH-R RNA that was missing the entire 3'-untranslated region (TRHR-R5) was more stable than full-length TRH-R RNA (TRHR-WT). In contrast to TRHR-WT mRNA, TRHR-R5 mRNA and TRHR-D9 mRNA, which was missing the 143 nucleotides 5' of the poly(A) tail, were not down-regulated by TRH in stably transfected GH3 cells as their rates of degradation were not increased. These data show that TRH regulates RNase activity in GH3 cells, that the 3'-untranslated region bestows decreased stability on TRH-R mRNA and that the 3' end of the mRNA is necessary for regulation by TRH of TRH-R mRNA degradation. We present an hypothesis that explains specific regulation of TRH-R mRNA degradation by TRH in GH3 pituitary cells.  相似文献   

3.
Using an autohistoradiographic technique, it has been possible to localize specific binding sites for [3H]thyrotropin-releasing hormone (TRH) in rat anterior pituitary cells in primary culture. A low percentage (3 %) of the cells were highly labelled while 10–20% of the remaining cells showed a lower level of accumulation of radioactivity. These data provide morphological evidence for the presence of TRH-binding sites in pituitary cells and suggest a large variation of their density.  相似文献   

4.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

5.
Summary In intact male rats after TRH administration for 7 and 14 days, TSH cells showed similar morphological changes to those observed after thyroidectomy. These changes were paralleled by small numerical increases in TSH cell counts. After 34 days of TRH treatment, however, most of the TSH cells had a normal appearance and the number of TSH cells also had returned to normal. TRH treatment for 7, 14 and 34 days caused morphological changes in Prolactin cells similar to those obtained after a suckling stimulus. In the three groups these changes were also paralleled by small numerical increases in Prolactin cell counts. The cell replication after TRH for 7 and 14 days, as measured by incorporation of tritiated thymidine to obtain a labeling index, was slightly but significantly increased.This work was supported by grants MA-552 and MT-2701 from the Medical Research Council of Canada. The authors wish to thank Dr. D.A.J. Ives, Connaught Medical Research Laboratories, Toronto, for providing the TRH, and Mr. G. Penz for technical assistance.Fellow of the Medical Research Council of Canada.  相似文献   

6.
EEG topography by a microcomputer system (ATAC-3700 Nihon-Kohden) was performed in the rabbit in order to investigate the mechanism of TRH action on the brain wave. Power spectral analysis was carried out using a fast Fourier transform algorithm. The square root of the power spectra was defined as the equivalent potential over each frequency band by Ueno & Matsuoka's method. Potential fields of EEG frequency band were printed out on the topographic maps. The potentials of the electrocortical delta and theta waves were high, while the potentials of the alpha, beta 1 and beta 2 waves were low. Stimulation of the nucleus ventralis anterior (VA) by 3 Hz and 8 Hz resulted in a decrease in these potentials, especially, those of the alpha, beta 1 and beta 2 waves. The potentials of the alpha and fast waves were increased following unilateral destruction of VA. In the rabbit, in which TRH 0.5 mg/kg had been administered beforehand, there was no decrease in the potential of each wave induced by stimulation of VA with frequencies of 3 Hz and 8 Hz. The findings suggest involvement of the diffuse thalamocortical projection system in the activation of EEG by TRH.  相似文献   

7.
Evidence of a direct stimulating effect of TRH on T4 secretion was found by using the perifusion technique on Rat thyroid fragments. A dose-response curve was plotted and the kinetic pattern of the response was studied.  相似文献   

8.
9.
10.
The effect of vasoactive intestinal peptide (VIP) on prolactin (PRL) secretion from pituitary cells is reviewed and compared to the effect of thyrotropin releasing hormone (TRH). These two peptides induced different secretion profiles from parafused lactotrophs in culture. TRH was found to increase PRL secretion within 4 s and induced a biphasic secretion pattern, while VIP induced a monophasic secretion pattern after a lag time of 45–60 s.The secretion profiles are compared to changes in adenylate cyclase activity, production of inositol polyphosphates, changes in intracellular calcium concentrations and changes in electrophysiological properties of the cell membrane.Abbreviations AC adenylate cyclase - DG diacyglycerol - GH growth hormone - GTP guanosine trisphosphate - Gi GTP binding proteins that mediate inhibition of adenylate cyclase and that are pertussis toxin sensitive - Gs GTP binding protein that mediates stimulation of adenylate cyclase - GH cells clonal rat pituitary tumor cells producing PRL and/or growth hormone - GH3 GH4C1 and GH4B6 subclones of GH cells - PKA protein kinase A - PKC protein kinase C - PLC phospholipase C - PRL prolactin - TPA 12-O-tetradecanoyl phorbol 13-acetate - TRH thyrotropin releasing hormone - VIP vasoactive intestinal peptide  相似文献   

11.
A E Pekary  J R Reeve  V P Smith 《Life sciences》1986,39(26):2565-2570
TRH occurs in very high concentration in rat prostate. A species specific protein with repetitive -Gln-His-Pro-Gly- sequences, which are flanked on the N- and C-terminus by paired basic residues, has been shown to be the source of TRH in frog skin and rat hypothalamus. Following cleavage by trypsin-like enzymes, the peptide fragments with N-terminal Gln spontaneously cyclize to pGlu while Gly within the C-terminally extended peptides serves as the -NH2 donor for the alpha-amidation of the proline residue. Because this last step in the biosynthesis of TRH is rate limiting for pGlu-His-Pro-Gly, we have combined several chromatographic and radioimmunoassay techniques to identify this TRH precursor in rat prostate.  相似文献   

12.
Chicks two and ten days-of-age respond to a wide range of thyrotropin releasing hormone (TRH) dosages as measured by thyroid uptake of 32P. The duration of hormone and 32P action is important. Excellent responses were obtained with the injection of 1.0 μCi32P at one hour and TRH either at one or four hours before autopsy in both two-day and ten-day-old birds. The 32P uptake in the thyroid glands was increased by doses of hormone which ranged from 40 nanograms to 125,000 nanograms and was bimodal. Analysis of the data when calculated using log10 of dose was best accomplished by the use of 5th-degree polynomial equations. It is suggested that the bimodal response is a result of a dual action of TRH. First, TRH initiates the release of stored TSH from the anterior pituitary; and second, TRH stimulates the secretion of newly synthesized TSH by the anterior pituitary.  相似文献   

13.
The effect of Thyrotropin Releasing Hormone (TRH) on the contractile activity elicited by acetylcholine and electric stimulation in the rat ileus terminalis was investigated. TRH did not show any intrinsic contractile activity but, after a 30 minute latency period, the peptide caused a shift to the left of the dose-response curve for both acetylcholine and electric stimulation. The binding of 3H-quinuclidinylbenzilate (3H-QNB) assayed on ileum slices disclosed that the addition of TRH increased the number of muscarinic cholinergic receptors without changes in affinity when incubation was performed at pH 7.8, but no effect TRH was demonstrated at pH 7.4. Therefore, in spite of its neural and direct actions on intestine motor activity, TRH may affect the acetylcholine induced contraction by increasing the number of muscarinic receptors at a specific pH.  相似文献   

14.
15.
A series of experiments were conducted in ewes and wether (castrate male) lambs to evaluate the influence of prostaglandins on secretion of anabolic hormones and to determine if repeated injections of prostaglandin (PG) F2α would chronically influence the secretion of these hormones and perhaps growth rate as well.A single intravenous injection of PGA1 and PGB1 (100 μg/kg) exerted no significant (P > .10) influence on plasma concentrations of prolactin (PRL), growth hormone (GH) or thyrotropin (TSH) in ewes. PGA1, but not PGB1, stimulated an increase in the plasma concentration of insulin. Infusion of PGF2α for 5.5 hr into ewes resulted in increased (P < .05) plasma concentrations of both GH and PRL while TSH and insulin were not significantly influenced. Prostaglandin F2α, when injected subcutaneously into wether lambs (10 mg twice weekly) stimulated (P < .05) plasma GH concentrations after the first injection, but not after 3 weeks of treatment. Changes in plasma PRL or TSH were not observed consistently in the lambs treated chronically with PGF2α or TRH.Prostaglandin F2α, in the present studies, and PGE1 in previously reported studies (1–3), has been demonstrated to be stimulatory to the secretion of PRL and GH. In contrast, PGA1 and PGB1, which lack an 11-hydroxyl group, failed to influence the secretion of either PRL or GH. It would, therefore, appear that the 11-hydroxyl group is a structural requirement for prostaglandins to influence the secretion of these two hormones in sheep.Treatment with thyrotropin releasing hormone (TRH), alone or in combination with PGF2α, significantly (P < .05) increased growth rate (average daily gains) while PGF2α did not, despite the fact that both compounds exerted similar effects on plasma GH.  相似文献   

16.
Characteristics of TRH-receptors were studied in the rat central nervous system (CNS). Ion species, pH and temperature importantly influenced TRH-receptor binding. Subcellular distribution of TRH-receptor binding revealed that synaptic membranes had the greatest percentage of total sites. Scatchard analysis suggested that the rat CNS had two distinct TRH binding sites with apparent dissociation constants (Kd) of 5 X 10(09) M and 13 X 10(-8) M. Receptor activity is sensitive to trypsin and phospholipase A digestion, suggesting that protein and phospholipid moieties are essential for the binding of [3H]TRH. Thiol reagents reduced the binding activity of the receptor, suggesting that an intrachain disulfide bond may form an important constituent of the binding site for TRH. The TRH-receptor in the rat brain was successfully solubilized with non-ionic detergent Triton X-100. On gel chromatography with Sepharose 6B column, the solubilized TRH-receptor molecule eluted at the fraction corresponding to an apparent molecular weight of 300,000 daltons, with Stokes' radius of 5.8 nm. The regional distribution of TRH-receptor binding was examined to clarify the site of TRH action. The highest level of binding was in the hypothalamus, cerebral cortex and hippocampus, indicating that TRH affects the CNS function mainly through the limbic system, cerebral cortex and hypothalamus. Moreover, tricyclic anti-depressants and Li+ decreased the binding of [3H]TRH. These findings suggest that endogenous TRH and TRH receptor may play the role of a neurotransmission modulator in the brain to control emotional and mental functions.  相似文献   

17.
Summary The electrophysiological and secretory properties of a well-studied clonal line of rat anterior pituitary cells (GH3) have been compared with a new line of morphologically distinct cells derived from it (XG-10). The properties of the latter cells differ from the parent cells in that they do not have receptors for thyrotropin-releasing hormone and their basal rate of secretion is substantially higher (ca. three- to fivefold). While both cell types generate Ca++ spikes, the duration of the spike in XG-10 cells (ca. 500 msec) is about 2 orders of magnitude longer than that in GH3 cells (5–10 msec). The current-voltage characteristics of the two cell types are markedly different; the conductance of GH3 cells is at least 20-fold higher than XG-10 cells when cells are depolarized to more positive potentials than the threshold for Ca++ spikes (–35 mV). While treatment of GH3 cells with the secretagogues tetraethylammonium chloride or thyrotropin-releasing hormone decreases the conductance in this voltage region to approximately the same as that for XG-10 cells, the electrophysiological and secretory properties of XG-10 cells are unaffected by treatment with either of these agents. Results of this comparative study suggest that XG-10 cells lack tetraethylammonium-sensitive K+ channels. The parallel loss of thyrotropin-releasing hormone receptor binding activity and of a K+ channel in XG-10 cells implies that the thyrotropin-releasing hormone receptor may be coupled with, or be an integral part of, this channel. Apparently thyrotropin-releasing hormone, like tetraethylammonium chloride, acts by inhibiting K+ channels resulting in a prolongation of the action potential, promoting Ca++ influx and subsequently enhancing hormone secretion.  相似文献   

18.
A series of experiments were conducted in ewes and whether (castrate male) lambs to evaluate the influence of prostaglandins on secretion of anabolic hormones and to determine if repeated injections of prostaglandin (PG) F2alpha would chronically influence the secretion of these hormones and perhaps growth rate as well. A single intravenous injection of PGA1 and PGB1 (100 microgram/kg) exerted no significant (P greater than .10) influence on plasma concentrations of prolactin (PRL), growth hormone (GH) or thyrotropin (TSH) in ewes. PGA1, but not PGB1, stimulated an increase in the plasma concentration of insulin. Infusion of PGF2alpha for 5.5 hr into ewes resulted in increased (P less than .05) plasma concentrations of both GH and ARL while TSH and insulin were not significantly influenced. Prostaglandin F2alpha, when injected subcutaneously into wether lambs (10 mg twice weekly) stimulated (P less than .05) plasma GH concentrations after the first injection, but not after 3 weeks of treatment. Changes in plasma PRL or TSH were not observed consistently in the lambs treated chronically with PGF2alpha or TRH. Prostaglandin F2alpha, in the present studies, and PGE1 in previously reported studies (1-3), has been demonstrated to be stimulatory to the secretion of PRL and GH. In contrast, PGA1 and PGB1, which lack an 11-hydroxyl group, failed to influence the secretion of either PRL or GH. It would, therefore, appear that the 11-hydroxyl group is a structural requirement for prostaglandins to influence the secretion of these two hormones in sheep. Treatment with thyrotropin releasing hormone (TRH), alone or in combination with PGF 2alpha, significantly (P less than .05) increased growth rate (average daily gains) while PGF2alpha did not, despite the fact that both compounds exerted similar effects on plasma GH.  相似文献   

19.
Thyrotropin releasing hormone (TRH) accelerates the turnover of phosphatidylinositol in GH3 cells ('phospholipid response'). From the analysis of inositol phosphates in the presence of Li+ which inhibits their dephosphorylation, it can be concluded that the hydrolysis of phosphatidylinositol 4,5-biphosphate, and possibly of phosphatidylinositol 4-phosphate by phospholipase C is markedly accelerated by TRH. It appears that this reaction initiates the acceleration of phosphatidylinositol turnover. The specificity of hormonally regulated phospholipase C reaction for polyphosphoinositides has important implications for the potential role of the phospholipid response as a mechanism of membrane signal transduction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号