首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The affinity-labeling technique is an extremely important method in receptor biochemistry. The 3-nitro-2-pyridinesulfenyl (Npys) group, attached to a mercapto group, can react only with a free thiol group (the beta-mercapto group of cysteine residue) of the target receptor molecules, forming a disulfide bond. This disulfide bonding is mediated through the thiol-disulfide exchange reaction. Unlike other labeling methods, the approach utilizing such chemically activated thiol-containing ligands is able to reproduce an unlabeled protein by treatment with dithiothreitol, a reducing reagent. This provides several unique aspects for the studies elucidating the structure-function relationships between the peptide and the receptor. Based on the SNpys affinity technique, we have achieved the discriminative disulfide-bonding affinity labeling of the three different subtypes of opioid receptors: mu, delta and kappa. This article reviews our novel affinity techniques in the in vitro receptor biochemistry.  相似文献   

2.
A series of 2-substituted sulfamoyl arylacetamides of general structure 2 were prepared as potent kappa opioid receptor agonists and the affinities of these compounds for opioid and chimeric receptors were compared with those of dynorphin A. Compounds 2e and 2i were identified as non-peptide small molecules that bound to chimeras 3 and 4 with high affinities similar to dynorphin A, resulting in K(i) values of 1.5 and 1.2 nM and 1.3 and 2.2 nM, respectively.  相似文献   

3.
We have identified high and low affinity insulin-like growth factor I (IGF I)-binding sites with mean dissociation constants of 0.37 and 6.25 nM, respectively, in solubilized placental membranes. We have separated these sites and purified the high affinity IGF I receptor 1,300-fold, with an overall yield of 9.9%, using wheat germ agglutinin-Sepharose chromatography, insulin affinity chromatography, and IGF I affinity chromatography. The Scatchard plot of IGF I binding to the high affinity receptor is linear, suggesting the purification of a single homogeneous class of binding sites. Insulin is two orders of magnitude less effective than IGF I in competitively inhibiting IGF I binding to this receptor. The high affinity IGF I receptor is composed of alpha and beta subunits with apparent molecular weights of 135,500 and 96,200, respectively. IGF I at concentrations of greater than or equal to 50 ng/ml stimulates autophosphorylation of the beta subunit of the purified high affinity receptor 4.6-fold. Low affinity IGF I-binding sites run through the IGF I affinity column or are eluted from the insulin affinity column. The separation of IGF I receptors with different binding affinities by sequential affinity chromatography will make it possible to examine directly the determinants of receptor affinity.  相似文献   

4.
5.
Derivatives of 5'-32P labeled (pU)3 an (pU)6 bearing 4-(N-2-chloroethyl-N-methylamino)benzylmethylamine residue attached to 5'-phosphate via phosphamide bond and (Up)5U[32P]pC and (Up)11U[32P]pC bearing 4-(N-2-chloroethyl-N-methylamino)benzyl residue attached to 3'-end via benzylidene bond were applied for the affinity labeling of 80S ribosomes from human placenta in the presence of a cognate tRNA. The derivatives of 32P-labeled pAUG and pAUGU3 analogous to the 5'-phosphamides of (pU)n were used for affinity labeling of 40S subunits in the presence of ternary complex eIF-2.GTP.Met-tRNA(f). The sites of the reagents' attachment to 18S ribosomal RNA were identified by blot-hybridization of the modified 18S rRNA with restriction fragments of the corresponding rDNA. They were found to be located within positions 976-1057 for (pU)6 and pAUGU3 derivatives and within 976-1164 for (pU)3 and pAUG ones. The sites of 18S rRNA modification with the derivatives of (Up)5UpC and (Up)11UpC were found within positions 1610-1869 at 3'-end of the molecule. All the sites identified here are located presumably within highly conserved parts of the eukaryotic small subunit rRNA secondary structure.  相似文献   

6.
7.
To clarify the existence and the distribution of endothelin (ET) receptor subtypes, we have examined the pharmacological properties and the molecular weight (Mr) of 125I-ET-1 and 125I-ET-3 binding sites in various tissues of pigs. ET-1 and ET-2 showed almost identical potencies in displacing the bound 125I-ET-1 in all the tissues examined. ET-3, sarafotoxin S6b (SRT-b) and sarafotoxin S6c (SRT-c) displaced the 125I-ET-1 with the same sensitivity as ET-1 (IC50 = 0.1-1.4 nM) in brain, kidney, liver and adrenal, whereas the three peptides showed very weak competition (IC50 = 40-500 nM) against 125I-ET-1 binding in cardiac atria, aorta, lung, stomach and uterus. The computer analyses of the binding data suggested the presence of high (Kd1 = 0.04-0.29 nM) and low (Kd2 = 60-190 nM) affinity binding sites for ET-3 and SRT-b in lung and stomach. 125I-ET-3 bound to the high affinity sites in lung and stomach was displaced by ET/SRT isopeptides almost equipotently. Two proteins with Mr of 47,000 and 35,000 were affinity-labeled with 125I-ET-1 in cerebellum, while a protein with Mr of 123,000, in addition to the two proteins, was predominantly labeled in lung. The above findings indicated that two distinct subclasses of ET receptors, namely, ET-1-specific and ET/SRT family-common receptors were distributed in various proportions in mammalian tissues, and suggested that their molecular forms are also different.  相似文献   

8.
Solid-phase synthetic methodology was developed for the preparation of peptide-based affinity labels. The initial peptides synthesized were dynorphin A (Dyn A) analogs [Phe(p-X)4,D-Pro10]Dyn A(1-11)NH2 containing isothiocyanate (X=-N=C=S) and bromoacetamide (X=-NHCOCH2Br) groups. The peptides were assembled on solid supports using Fmoc-protected amino acids, and the side chain amine to be functionalized, Phe(p-NH2), was protected by the Alloc (allyloxycarbonyl) group. Following removal of the Alloc group by palladium(O), the reactive isothiocyanate and bromoacetamide functionalities were successfully introduced while the peptides were still attached to the resin. Synthesis of these peptides was carried out on polystyrene (PS) and polyethylene glycol-polystyrene (PEG-PS) resins containing the PAL [peptide amide linker, 5-(4-Fmoc-aminomethyl-3,5-dimethoxyphenoxy)valeric acid] linker. Both the rate of Alloc deprotection and the purity of the crude affinity-labeled peptides obtained were found to be dependent on the resin used for peptide assembly.  相似文献   

9.
Since the discovery of the opioid receptors and their endogenous ligands an immense research work has been devoted to the exploration of their specificity, the mechanism of ligand binding and ligand-receptor interactions. One of the main goals has been the location and characterization of the binding sites. The present review compiles the results achieved in this field in the last quarter of a century, and puts some questions concerning the success of these efforts.  相似文献   

10.
p-(Dimethylamino)benzenediazonium fluoroborate (DDF) behaves, in the dark, as a reversible competitive antagonist of the electrical response of Electrophorus electricus electroplaque to acetylcholine and of the acetylcholine-gated single-channel currents recorded in the C2 mouse cell line. This chemically stable but highly photoreactive compound binds irreversibly to the acetylcholine receptor when irradiated by visible light. In vivo, it irreversibly blocks the postsynaptic response of E. electricus electroplaque to agonists. In vitro, it reduces the alpha-bungarotoxin-binding capacity of acetylcholine receptor rich membrane fragments prepared from Torpedo marmorata electric organ. Once reversibly bound to the T. marmorata acetylcholine receptor, this ligand can be selectively photodecomposed by an energy-transfer reaction involving a tryptophan residue(s) of the protein. By use of reagent concentrations that are below the dissociation constant at equilibrium, up to 60% of the agonist-binding sites are covalently labeled. Under these conditions the alpha subunit of the acetylcholine receptor is preferentially labeled, and this labeling is partially prevented by agonists or competitive antagonists. This protective effect is substantially increased by prior incubation with phencyclidine, a compound known to prevent the binding of DDF at the level of the high-affinity site for noncompetitive blockers [Kotzyba-Hibert, F., Langenbuch-Cachat, J., Jaganathen, J., Goeldner, M. P., & Hirth, C. G. (1985) FEBS Lett. 182, 297-301]. The incorporation of about one molecule of label in an agonist/competitive antagonist protectable manner per alpha-bungarotoxin-binding site suffices to fully block alpha-bungarotoxin binding to the membrane-bound receptor. Thus, DDF behaves as a monovalent photoaffinity label of the acetylcholine-binding site.  相似文献   

11.
《Life sciences》1991,49(18):PL141-PL146
Delta opioid binding sites were assayed using [3H][D-ala2,D-leu5]enkephalin and rat brain membranes depleted of μ binding sites with the site-directed acylating agent, 2-(p-ethoxybenzyl)-1-diethylaminoethyl-5 -isothiocyanatobenzimidazole-HCI. [D-Pen2, D-Pen5]enkephalin (DPDPE), [D-Pen2,L-Pen5]enkephalin, [D-Ala2]deltorphin-I and [D-Ala2]deltorphin-II inhibition curves were characterized by slope factors (Hill coefficients) less than 1. The low slope factor of DPDPE persisted in the presence of 50 μM 5'-guanylyimidodiphosphate in the assay. Quantitative analysis of [D-ala2,D-leu5]enkephalin, DPDPE and [D-Ala2]deltorphin-I binding surfaces resolved two binding sites. Whereas [D-ala2,D-leu5]enkephalin had equal affinity for both sites, DPDPE and [D-Ala2]deltorphin-I had high affinity for the high capacity binding site, and low affinity for the low capacity binding site. These data support pharmacological studies demonstrating δ receptor subtyes which mediate antinociception.  相似文献   

12.
The relative binding affinities for both the prostaglandin (PG)E1 and PGF2alpha specific bovine luteal binding sites were determined for five PGE and fourteen PGF derivatives and analogs. Relative binding affinity was determined in vitro using membranes prepared from bovine corpora luteal (CL) obtained from the slaughterhouse. The parent structure of the analog was a dominant feature in determining the affinity for the respective PG binding site. Luteolysis was determined in cattle following intramuscular injection of various doses of prostaglandin once between days 6 and 14 after estrus and measuring CL regression by ovarian palpation per rectum, interval between injection and return to estrus and duration of the subsequent estrous cycle. A dose which was luteolytic was established for each of eight PGF-type compounds, and a dose which was not luteolytic was also established. There appeared to be limited association between the relative affinity for the PGF2alpha specific site in vitro and the estimated luteolytic dose range of these PGF analogs when tested in cattle. Differences in in vivo luteolytic potency for the compounds tested could not be explained by differences in binding affinity. Differences in metabolism and absorption may also be important in the determination of in vivo potency.  相似文献   

13.
N-Bromoacetyl-2-iodo-5-methoxytryptamine (BIM), a novel derivative of the biologically active melatonin analog, 2-iodomelatonin, was used to identify melatonin binding proteins in synaptosomes from Syrian hamster brain. Incubation of the synaptosomes with BIM resulted in a concentration dependent, irreversible inhibition of 2-125I-iodomelatonin binding. The radioactive form of BIM, N-Bromoacetyl-2-125I-iodo-5-methoxytryptamine (125I-BIM), became covalently attached to three proteins in the synaptosomes, in a concentration dependent manner. These proteins had apparent molecular weight values of 92, 55 and 45 kilodaltons. The incorporation of 125I-BIM into all three proteins was inhibited by BIM greater than 2-iodomelatonin greater than melatonin whereas the melatonin antagonist N-(1,4 dinitrophenyl)- 5-methoxytryptamine (ML-23) selectively inhibited the labeling of the 45 kDa protein. These results indicate that the 92, 55 and 45 KDa polypeptides are melatonin binding proteins.  相似文献   

14.
15.
A C Smith  J M Harmon 《Biochemistry》1985,24(18):4946-4951
Potential charge heterogeneity within the glucocorticoid binding protein (GBP) of the glucocorticoid receptor was examined by a combination of affinity labeling, immunopurification, and high-resolution two-dimensional (2D) gel electrophoresis. One-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of [3H]dexamethasone 21-mesylate ([3H]DM) labeled cytosol identified a major, competable, component of Mr approximately equal to 92 000 (92K). This component was recognized by anti-human glucocorticoid receptor antibodies but not by nonimmune serum, indicating that the 92K component was the reduced denatured GBP. Examination of [3H]DM-labeled GBP by conventional 2D electrophoresis utilizing equilibrium isoelectric focusing in the first dimension failed to resolve the 92K GBP into discrete isoelectric components. This behavior was not representative of other, nonspecifically [3H]DM-labeled proteins or proteins in general. Nonequilibrium pH gradient electrophoresis (NEPHGE) was therefore employed to achieve separation in the first dimension. Immunopurified, [3H]DM-labeled GBP subjected to NEPHGE reached isoelectric equilibrium after 6 h of electrophoresis at 400 V. A single, broad peak of radioactivity was identified at pH approximately equal to 6.3. Second-dimension analysis of the NEPHGE-separated GBP by SDS-PAGE resolved this peak into two discrete, 92K, isoforms of apparent pI = 5.7 and 6.0-6.5. The GBP charge heterogeneity was confirmed by NEPHGE 2D analysis of [3H]DM-labeled GBP prepared directly from crude cytosol. Two isoforms indistinguishable from those observed in immunopurified samples were identified. An additional, more acidic, isoform (apparent pI approximately equal to 5.2) was also identified. Thus, there are at least two, and perhaps three, isoforms of the GBP. These data therefore suggest that there is significant charge heterogeneity in the GBP of the glucocorticoid receptor.  相似文献   

16.
17.
Heterogeneity of the muscarinic receptor population in the rat central and peripheral lung was found in competition binding experiments against [3H]quinuclidinyl benzilate [( 3H]QNB) using the selective antagonists pirenzepine, AF-DX 116 and hexahydrosiladifenidol (HHSiD). Pirenzepine displaced [3H]QNB with low affinity from preparations of central airways indicating the absence of M1 receptors in the trachea and bronchi. Muscarinic receptors in the central airways are comprised of both M2 and M3 receptors since AF-DX 116, an M2-selective antagonist, bound with high affinity to 70% of the available sites while HHSiD, an M3-selective antagonist bound with high affinity to the remaining binding sites. In the peripheral lung, pirenzepine bound with high affinity to 14% of the receptor population, AF-DX 116 bound with high affinity to 79% of the binding sites while HHSiD bound with high affinity to 18% of the binding sites. The presence of M1 receptors in the peripheral airways but not in the central airways was confirmed using [3H]telenzepine, an M1 receptor ligand. [3H]Telenzepine showed specific saturable binding to 8% of [3H]QNB labeled binding sites in homogenates of rat peripheral lung, while there was no detectable specific binding in homogenates of rat trachea or heart. The results presented here demonstrate that there are three muscarinic receptor subtypes in rat lungs, and that the distribution of the different subtypes varies within the lungs. Throughout the airways, the dominant muscarinic receptor subtype is M2. In the trachea and bronchi the remaining receptors are M3, while in the peripheral lungs, the remaining receptors are both M1 and M3.  相似文献   

18.
Yan C  Digate RJ  Guiles RD 《Biopolymers》1999,49(1):55-70
Structural and dynamic properties of opioid peptide E have been examined in an sodium dodecyl sulfate (SDS) micelle. Structural and dynamic studies both indicate that this peptide exhibits greater segmental mobility than typical structured proteins. An nmr structural analysis of adrenal peptide E in SDS micelles indicated the presence of two well-defined beta-turns, one at the N-terminus encompassing residues 3 to 6, and the second in the region between residues 15 and 18. Certain side chain dihedral angles were also remarkably well defined, such as the chi 1 angle of F4, which exhibited a trans configuration. These calculated structures were based on a set of 9.5 restraints per residue. The backbone dynamics of peptide E in SDS micelles were examined through an analysis of 15N-relaxation parameters. An extended model-free analysis was used to interpret the relaxation data. The overall rotational correlation time is 19.7 ns. the average order parameter S2 is 0.66 +/- 0.15. The N-terminal loop region residues including G3 to R6 have an average order parameter of 0.70 +/- 0.23. The average order parameter lies somewhere between that observed for a random coil (e.g., S2 = 0.3) and that of a well-defined tertiary fold (e.g., S2 = 0.86). This suggests that peptide E in SDS micelles adopts a restricted range of conformations rather than a random coil. Based on the helical structure recently obtained for the highly homologous kappa-agonist dynorphin-A(1-17) and the beta-turn in the same region of peptide E, it is reasonable to assume that these two elements of secondary structure reflect different receptor subtype binding geometries. The intermediate order parameters observed for peptide E in an SDS micelle suggest a degree of dynamic mobility that may enable facile interconversion between helical and beta-turn geometries in the N-terminal agonist domain.  相似文献   

19.
The interaction of putative Ca2+ channels of Drosophila head membranes with molecules of the phenylalkylamine series was studied from binding experiments using (-)-[3H]D888 and (+/-)-[3H]verapamil. These ligands recognize a single class (Kd = 0.1-0.4 nM; Bmax = 1600-1800 fmol/mg of protein) of very high affinity binding sites. The most potent molecule in the phenylalkylamine series was (-)-verapamil with a Kd value as exceptionally low as 4.7 pM. Molecules in the benzothiazepine and diphenylbutylpiperidine series of Ca2+ channel blockers as well as bepridil inhibited (-)-[3H]D888 binding in a competitive way with Kd values between 12 and 190 nM, suggesting a close correlation, as in the mammalian system, between these receptor sites and those recognizing phenylalkylamines. A tritiated (arylazido)phenylalkylamine with high affinity for the Drosophila head membranes, phenylalkylamine receptor Kd = 0.24 nM), was used in photoaffinity experiments. A protein of Mr 135,000 +/- 5,000 was specifically labeled after ultraviolet irradiation.  相似文献   

20.
J C Wu  J Lin  H Chuan  J H Wang 《Biochemistry》1989,28(22):8905-8911
The affinity reagents 3'-O-(5-fluoro-2,4-dinitrophenyl) [alpha-32P]ATP (FDNP-[alpha-32P]ATP) and 3'-O-(5-fluoro-2,4-dinitrophenyl) [8-14C]ATP (FDNP-[14C]ATP) were synthesized and used to characterize the structure and function of the three active sites in F1-ATPase. FDNP-[alpha-32P]ATP was found to bind covalently to F1 up to two DNP-[alpha-32P]ATP labels per F1 in the absence of Mg2+ without decreasing the ATPase activity. However, when MgCl2 was subsequently added to the reaction mixture, the enzyme could be further labeled with concomitant decrease in ATPase activity that is consistent with the complete inactivation of one enzyme molecule by an affinity label at the third ATP-binding site. Partial hydrolysis of the FDNP-[14C]ATP-labeled enzyme and sequencing of the isolated peptide indicated that the affinity label was attached to Lys-beta 301 at all three active sites. Samples of F1 with covalent affinity label on Lys-beta 301 were also used to reconstitute F1-deficient submitochondrial particles. The reconstituted particles were assayed for ATPase and oxidative phosphorylation activities. These results show that the catalytic hydrolysis of ATP either by F1 in solution or by F0F1 complex attached to inner mitochondrial membrane takes place essentially at only one active site, but is promoted by the binding of ATP at the other two active sites, and that ATP synthesis during oxidative phosphorylation takes place at all three active sites [corrected].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号