首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The distribution and colocalization of neuropeptides and 5-hydroxytryptamine in the posterior portion of the large intestine of the toad was studied using single- and dual-label immunohistochemistry. Neurons containing colocalized galanin/somatostatin or vasoactive intestinal peptide alone were observed along intramural pelvic nerves. Some of the galanin/somatostatin neurons also contained 5-hydroxytryptamine. Synaptic boutons containing colocalized calcitonin gene-related peptide/vasoactive intestinal peptide were associated with the galanin/somatostatin neurons. The muscle of the large intestine was also innervated by axons containing galamin/somatostatin, vasoactive intestinal peptide/calcitonin gene-related peptide or vasoactive intestinal peptide alone. Nerve fibres containing calcitonin gene-related peptide/substance P, probably representing primary afferent nerves, were also associated with muscle bundles. Submucosal blood vessels carried dense plexuses of fibres containing vasoactive intestinal peptide alone or and calcitonin gene-related peptide/substance P. Adrenergic perivascular nerves also contained galanin and neuropeptide Y.  相似文献   

2.
When either substance P or vasoactive intestinal peptide was injected into an acutely decentralized intrathoracic sympathetic ganglion, short-lasting augmentation of cardiac chronotropism and inotropism was induced. These augmentations were induced before the fall in systemic arterial pressure occurred which was a consequence of these peptides leaking into the systemic circulation in enough quantity to alter peripheral vascular resistance directly. When similar volumes of normal saline were injected into an intrathoracic ganglion, no significant cardiac changes were induced. When substance P or vasoactive intestinal peptide was administered into an intrathoracic ganglion, similar cardiac augmentations were induced either before or after the intravenous administration of hexamethonium. In contrast, when these peptides were injected into an intrathoracic ganglion in which the beta-adrenergic blocking agent timolol (0.1 mg/0.1 ml of normal saline) had been administered no cardiac augmentation occurred. These data imply that in the presence of beta-adrenergic blockade intraganglionic administration of substance P or vasoactive intestinal peptide does not modify enough intrathoracic neurons to alter cardiac chronotropism and inotropism detectably. When neuropeptide Y was injected into an intrathoracic ganglion, no cardiac changes occurred. However, when cardiac augmentations were induced by sympathetic preganglionic axon stimulation these were enhanced following the intraganglionic administration of neuropeptide Y. As this effect occurred after timolol was administered into the ipsilateral ganglia, but not after intravenous administration of hexamethonium, it is proposed that the effects of neuropeptide Y are dependent upon functioning intrathoracic ganglionic nicotinic cholinergic synaptic mechanisms. Intravenous administration of either morphine or [D-ala2,D-leu5]enkephalin acetate did not alter the capacity of the preganglionic sympathetic axons to augment the heart when stimulated. Following the intravenous administration of naloxone, the positive inotropic cardiac responses induced by efferent preganglionic sympathetic axonal stimulation were enhanced minimally in control states and significantly following hexamethonium administration. Thus, it appears that enkephalins are involved in the modulation of intrathoracic ganglion neurons regulating the heart, perhaps via modification of beta-adrenergic receptors. Taken together these data indicate that substance P, vasoactive intestinal peptide, neuropeptide Y, or enkephalins modify intrathoracic ganglionic neurons which are involved in efferent sympathetic cardiac regulation.  相似文献   

3.
The distribution of intrinsic enteric neurons and extrinsic autonomic and sensory neurons in the large intestine of the toad, Bufo marinus, was examined using immunohistochemistry and glyoxylic acid-induced fluoresecence. Three populations of extrinsic nerves were found: unipolar neurons with morphology and location typical of parasympathetic postganglionic neurons containing immunoreactivity to galanin, somatostatin and 5-hydroxytryptamine were present in longitudinally running nerve trunks in the posterior large intestine and projected to the muscle layers and myenteric plexus throughout the large intestine. Sympathetic adrenergic fibres supplied a dense innervation to the circular muscle layer, myenteric plexus and blood vessels. Axons containing colocalized calcitonin gene-related peptide immunoractivity and substance P immunoreactivity distributed to all layers of the large intestine and are thought to be axons of primary afferent neurons. Five populations of enteric neurons were found. These contained immunoreactivity to vasoactive intestinal peptide, which distributed to all layers of the large intestine; galanin/vasoactive intestinal peptide, which projected to the submucosa and mucosa; calcitonin gene-related peptide/vasoactive intestinal peptide, which supplied the circular muscle, submucosa and mucosa; galanin, which projected to the submucosa and mucosa; and enkephalin, which supplied the circular muscle layer.  相似文献   

4.
Summary Single- and dual-labelling immunohistochemistry were used to determine the distribution and coexistence of neuropeptides in perivascular nerves of the large arteries and veins of the snake, Elaphe obsoleta, using antibodies for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, neuropeptide Y, galanin, somatostatin, and leu-enkephalin. Blood vessels were sampled from four regions along the body of the snake: region 1, arteries and veins anterior to the heart; region 2, central vasculature 5 cm anterior and 10 cm posterior to the heart; region 3, arteries and veins in a 30-cm region posterior to the liver; and region 4, dorsal aorta and renal arteries, renal and intestinal veins, 5–30 cm cephalad of the vent. A moderate to dense distribution of vasoactive intestinal polypeptide-like immunoreactive fibres was found in most arteries and veins of regions 1–3, but fibres were absent from the vessels of region 4. The majority of vasoactive intestinal polypeptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were unaffected by either capsaicin or 6-hydroxydopamine (6-OHDA) pretreatment. In the anterior section of the snake, the vagal trunks contained many cell bodies with colocalized vasoactive intestinal polypeptide and substance P-like immunoreactivity. It is suggested that the vasoactive intestinal polypeptide/substance P-like immunoreactive cell bodies and fibres are parasympathetic postganglionic nerves. Neuropeptide Y-like immunoreactive fibres were observed in all arteries and veins, being most dense in regions 3 and 4. The majority of these fibres also contained colocalized galanin-like immunoreactivity, and were absent in tissues from 6-OHDA pretreated snakes, suggesting that neuropeptide Y and galanin are colocalized in adrenergic nerves. A small number of neuropeptide Y-like immunoreactive fibres contained vasoactive intestinal polypeptide but not galanin, and were unaffected by 6-OHDA treatment. All calcitonin gene-related peptide-like immunoreactive fibres contained colocalized substance P-like immunoreactivity, and these fibres were observed in all vessels, being particularly dense in the carotid artery and jugular veins. All calcitonin gene-related peptide/substance P-like immunoreactive fibres appeared damaged after capsaicin treatment suggesting they represent fibres from afferent sensory neurons. A sparse plexus of somatostatin-like immunoreactive fibres was observed in the vessels only from region 4. No enkephalin-like immunoreactive fibres were found in any blood vessels from any region. This study provides morphological evidence to suggest that there is considerable functional specialization within the components of the rat snake peripheral autonomic system controlling the circulation, in particular the regulation of venous capacitance.  相似文献   

5.
Biochemical, histochemical and neurophysiological data suggest that substance P and somatostatin are neurotransmitters for primary afferent neurons. This study used intrathecal administration of these peptides and others (neurotensin and vasoactive intestinal polypeptide) in chronically catheterized, environmentally adapted, freely moving rats to evaluate their effects on unconditioned behavior. Substance P and somatostatin each elicited behaviors which were dose related. The behaviors included caudally directed biting and licking along with hindlimb scratching, writhing and retching. The behavioral responses were rapid in onset (1 min) and, in the case of substance P, short in duration (3 min). Vehicle, neurotensin and vasoactive intestinal polypeptide were without effect. These results demonstrate the ability of substance P and somatostatin to induce behavior in rats upon intrathecal administration and extend previous studies in mice.  相似文献   

6.
A primary culture of the canine jejunal submucosa has been established and used to investigate neuronal somatostatin release. Immunocytochemical characterization of the cultures demonstrated the presence of the following peptidergic neurons: neurotensin (30%), somatostatin (27%), vasoactive intestinal polypeptide (14%), neuropeptide Y (10%), and substance P (5%). No immunoreactive neurons were observed with the available antisera to galanin, gastrin-releasing peptide, and motilin. The concentration of somatostatin-like immunoreactivity, as determined by radioimmunoassay of cell extracts, was 358 +/- 105 pmol/well. Basal release of somatostatin was 4.4 +/- 0.9% total cell content and was significantly inhibited by the addition of substance P at 1 and 100 nM. The addition of the calcium ionophore, A23187, with phorbol 12-myristate 13-acetate stimulated somatostatin release in a concentration-dependent manner. These data indicate that short-term cultures of the jejunal submucosal plexus will be an excellent model for determination of the factors influencing the release of neural somatostatin.  相似文献   

7.
H Nawa  P H Patterson 《Neuron》1990,4(2):269-277
Various conditioned media contain multiple factors that regulate the expression of the neurotransmitters acetylcholine, serotonin, and catecholamines and the neuropeptides substance P, somatostatin, vasoactive intestinal polypeptide-related peptides, cholecystokinin, and enkephalins in cultured sympathetic neurons. Using biochemical and immunological methods, we identify at least three distinct factors in heart cell conditioned medium: one induces acetylcholine, substance P, somatostatin, and vasoactive intestinal polypeptide-related peptides while suppressing catecholamine expression, a second factor induces only vasoactive intestinal polypeptide-related peptides, and a third factor induces only somatostatin expression. These observations demonstrate the existence of a group of biochemically and immunologically distinct factors involved in phenotypic specification with unique, but partially overlapping activities. The analogy with the family of differentiation factors in the hematopoietic system is discussed.  相似文献   

8.
Summary Coexistence of peptides in the small intensely fluorescent cells was demonstrated by immunocytochemistry for met-enkephalin-Arg-Gly-Leu, vasoactive intestinal polypeptide, somatostatin, neuropeptide Y and dynorphin. In the extreme example, a single cell was immunoreactive to all 5 peptides examined. Four peptides coexisted in 8% and three peptides in 13% of SIF cells. In 10% of SIF cells no peptide immunoreactivity could be detected. The most prevalent peptide was met-enkephalin (in 46% of cells), then vasoactive intestinal polypeptide (45%), somatostatin (39%), neuropeptide Y (31%) and dynorphin (24%). Met-enkephalin and vasoactive intestinal polypeptide coexisted most commonly (25%).  相似文献   

9.
 Immunohistochemical studies have been performed to investigate the occurrence and coexistence of two catecholamine-synthesising enzymes, tyrosine hydroxylase and dopamine-β-hydroxylase, and several neuropeptides, including neuropeptide Y, vasoactive intestinal polypeptide, Leu5-enkephalin, somatostatin, calcitonin gene-related peptide and substance P, in nerve fibres supplying porcine accessory genital glands, the seminal vesicles, prostate (body and the disseminated part) and bulbourethral glands. Three major populations of nerve fibres supplying non-vascular elements of the glands have been distinguished (from the largest to the smallest one): (1) noradrenergic fibres, the majority of which contain Leu5-enkephalin, neuropeptide Y or, to a lesser extent, somatostatin, (2) non-noradrenergic, putative cholinergic fibres containing vasoactive intestinal polypeptide, neuropeptide Y and/or somatostatin and, (3) non-noradrenergic, presumably sensory fibres, containing calcitonin gene-related peptide and substance P. Whilst the coexistence patterns within nerves supplying particular glands are similar, the density of innervation varies between the organs. The innervation of the seminal vesicles and prostatic body is more developed than that of the disseminated part of the prostate and bulbourethral glands. The majority of noradrenergic fibres related to blood vessels contain neuropeptide Y only, while the non-noradrenergic nerves contain mainly vasoactive intestinal polypeptide. The possible function and origin of particular nerve fibre populations are discussed. Accepted: 16 November 1998  相似文献   

10.
Morphologic and immunohistochemical studies were conducted to ascertain whether pumiliotoxin-B (PTX-B), an indolizine alkaloid from the skin of the Neotropical dendrobatid frog, Dendrobates pumilio, affects the anatomic and immunohistochemical features of the electrically stimulated mouse vas deferens preparations. PTX-B, at a concentration of 1 microM, consistently decreased the density pattern of neuropeptide Y (NPY)-immunoreactive nerve fibers contained within the circular muscular layer. The alkaloid also induced striking morphologic changes. It enlarged the lumen of the vasa and relaxed the muscular wall. Pretreatment with prazosin or haloperidol affected neither the release of NPY nor the morphologic changes; pretreatment with tetrodotoxin and guanethidine abolished NPY release and prevented the PTX-B-induced morphologic changes. PTX-B had no appreciable effect on the density and distribution pattern of nerve fibers immunostained for vasoactive intestinal polypeptide, substance P, calcitonin gene-related peptide, enkephalin, pancreatic polypeptide, 5-hydroxy-tryptamine and tyrosine hydroxylase.  相似文献   

11.
Summary Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin generelated immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

12.
Calcitonin gene-related peptide-like immunoreactivity was demonstrated in in sensory nerve fibers in the epidermis and dermis as free nerve endings and around blood vessels and hair follicles of the human finger pad and arm skin. The vast majority of the calcitonin gene-related immunoreactive fibers was shown to display also substance P-like immunoreactivity and a few fibers in the dermis were somatostatin positive. No fibers displaying both substance P and somatostatin-like immunoreactivity were found but a few substance P immunoreactive fibers in the dermis-epidermis region were found to contain also vasointestinal polypeptide-like immunoreactivity. In the sweat glands, abundant calcitonin gene-related peptide positive, but substance P negative, fibers were observed with a similar distribution pattern as the vasoactive intestinal polypeptide immunoreactive fibers and these fibers were suggested to be of sympathetic origin.  相似文献   

13.
C H Block  G Hoffman  B S Kapp 《Peptides》1989,10(2):465-471
The present investigation was undertaken to examine the organization of peptidergic projections that exist between the parabrachial nuclear complex (PB) and the central nucleus of the amygdala (CNA). The retrograde tracer True Blue was injected into the CNA of adult rats. The brain tissue was then reacted immunocytochemically to localize neurotensin (NT), substance P (SP), methionine enkephalin (ENK), vasoactive intestinal polypeptide (VIP), somatostatin (SS), and cholecystokinin octapeptide (CCK). Following microinjection of True Blue in the CNA, retrogradely-labeled neurons were located primarily in the external lateral subnucleus, abutting the brachium conjunctivum. In animals that received colchicine pretreatment, two populations of neurons, containing either SP or NT, were found to project to the CNA. In addition, cells containing CCK, ENK, VIP, or SS were not found to be a part of this projection system. These data suggest that neurons in the PB project to the CNA and are, in part peptide-containing.  相似文献   

14.
The presence of vasoactive intestinal polypeptide (VIP), substance P (SP), somatostatin, enkephalin, and avian pancreatic polypeptide (APP) in nerves in the female genital tract raises the question of their physiological significance as neurotransmitter substances. We have examined the effect of these peptides on non-vascular uterine smooth muscle in vivo as well as in vitro, and the effect on blood flow in the genital tract of rabbit and cat. SP caused a dose-dependent increase in mechanical and myoelectrical activity, an action which could be antagonized by VIP. Substance P, leu-enkephalin and VIP induced a concentration related increase in blood flow of the uterus, where VIP seems to be the most potent vasodilator. Neither the effects on vascular nor on non-vascular smooth muscle were inhibited by adrenergic nor cholinergic blocking agents. APP was able to inhibit the VIP-induced vasodilation in rabbits. These findings suggest that several peptides are involved in the local nervous control of both uterine contractions and haemodynamic events.  相似文献   

15.
Summary The gross morphology and growth patterns of substance P, enkephalin-, somatostatin and vasoactive intestinal peptide-immunoreactive neurons have been studied in explant cultures of the myenteric plexus taken from beneath the newborn guinea-pig taenia coli, grown for up to 4 weeks in vitro. Substance P and enkephalin-immuno-reactive neurons were more abundant than somatostatin and vasoactive intestinal peptide-immunoreactive neurons. The peptide-containing neuronal cell bodies were clearly visible in culture and exhibited characteristic gross morphologies similar to those described in situ, although some overlap of shape between populations containing different peptides was seen. All four types of peptide-containing fibres were found in the outgrowth and central areas of the cultures. In the case of substance P and somatostatin, the density and pattern of labelling in the central, neuronal area of the cultures resembled that previously seen in the myenteric plexus of the newborn guinea-pig caecum in situ, while the density of the enkephalin-immunoreactive fibres was greater, and that of the vasoactive intestinal peptide-immunoreactive fibres less than that seen in situ. These observations suggest that subpopulations of myenteric neurons containing different peptides may be differentially affected by the culture environment. Possible contributory factors are discussed.  相似文献   

16.
Using the indirect immunofluorescence technique of Coons and collaborates, somatostatin-like immunoreactivity was found in skin lesions of patients presented with urticaria pigmentosa. The cytoplasmic immunoreactivity was sometimes of a granular type. In addition, immunofluorescence was also observed in certain surrounding connective tissue elements. No specific staining was seen when supplementing the first antiserum with control serum, nor could any unique specific immunofluorescence by found in the pathological areas (compared with skin of normal healthy volunteers) after incubation with antibodies to substance P, vasoactive intestinal polypeptide or avian pancreatic polypeptide. No thyrotropin releasing hormone or enkephalin immunoreactivity was seen in skin from either the patients or the controls.  相似文献   

17.
The colocalization of immunoreactivities to substance P and calcitonin gene-related peptide (CGRP) in nervous structures and their correlation with other peptidergic structures were studied in the stellate ganglion of the guinea pig by the application of double-labelling immunofluorescence. Three types of fibre were distinguished. (1) Substance P+/CGRP+ fibres, which sometimes displayed additional immunoreactivity for enkephalin, constituted a small fibre population of sensory origin, as deduced from retrograde labelling of substance P+/CGRP+ dorsal root ganglion cells. (2) Substance P+/CGRP fibres were more frequent; some formed baskets around non-catecholaminergic perikarya that were immunoreactive to vasoactive intestinal polypeptide (VIP). (3) CGRP+/substance P fibres were most frequent and were mainly distributed among tyrosine hydroxylase (TH)-immunoreactive cell bodies. The peptide content of fibre populations (2) and (3) did not correspond to that of sensory ganglion cells retrogradely labelled by tracer injection into the stellate ganglion. Therefore, these fibres are throught to arise from retrogradely labelled preganglionic sympathetic neurons of the spinal cord, in which transmitter levels may have been too low for immunohistochemical detection of substance P or CGRP. CGRP-immunoreactivity but no substance P-immunolabelling was observed in VIP-immunoreactive postganglionic neurons. Such cell bodies were TH-negative and were spared by substance P-immunolabelled fibre baskets. Retrograde tracing with Fast Blue indicated that the sweat glands in the glabrous skin of the forepaw were the targets of these neurons. The streptavidin-biotin-peroxidase method at the electron-microscope level demonstrated that immunoreactivity to substance P and CGRP was present in dense-cored vesicles of 50–130 nm diameter in varicosities of non-myelinated nerve fibres in the stellate ganglion. No statistically significant difference in size was observed between vesicles immunolabelled for substance P and CGRP. Immunoreactive varicosities formed axodendritic and axosomatic synaptic contacts, and unspecialized appositions to non-reactive neuronal dendrites, somata, and axon terminals. Many varicosities were partly exposed to the interstitial space. The findings provide evidence for different pathways utilizing substance P and/or CGRP in the guinea-pig stellate ganglion.  相似文献   

18.
19.
Growth-inhibitory properties of vasoactive intestinal polypeptide   总被引:2,自引:0,他引:2  
It has recently been demonstrated that several neuropeptides can affect cell growth. The mammalian tachykinins substance P and neurokinin A, which are present in peripheral sensory neurons, stimulate growth of cultured connective tissue cells. Substance P-like immunoreactivity has been demonstrated in neuroblastoma cell lines. Neuroblastoma cells also produce other neuropeptides, among them vasoactive intestinal polypeptide (VIP). We report here that VIP is a potent inhibitor of serum-induced DNA synthesis in cultured smooth muscle cells (SMC), whereas no growth-inhibition was seen in SMC exposed to neurokinin A, calcitonin-gene related peptide, neuropeptide Y, somatostatin, or cholecystokinin. The growth-inhibitory effect of VIP was closely related to its ability to induce formation of cyclic AMP. Our results raise the possibility that peptides released by neurons, endocrine cells, as well as by transformed cells, may not only function as mitogens but also as inhibitory modulators of cell growth.  相似文献   

20.
Summary The presence of immunoreactive enkephalin, dynorphin, vasoactive intestinal polypeptide, cholecystokinin, substance P and neuropeptide Y in nerve fibers that project to the guinea-pig inferior mesenteric ganglion was analysed, after different denervation and ligation procedures. A quantitative analysis demonstrates that enkephalin- and substance P fibers reach the ganglion mainly via lumbar splanchnic and partly via intermesenteric nerves. Dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin fibers reach the ganglion mainly via colonic and partly via hypogastric or intermesenteric nerves. Neuropeptide Y fibers enter via intermesenteric, lumbar splanchnic and hypogastric nerves and pass through the ganglion. Analysis of serial 0.5 m sections tends to confirm co-existence: of dynorphin, vasoactive intestinal polypeptide and cholecystokinin in fibers projecting from the colon; of dynorphin with substance P in the lumbar splanchnic nerves; and of neuropeptide Y with substance P in the hypogastric and colonic fibers. Synaptic contacts, predominantly axodendritic, onto the ganglion cells from enkephalin-, vasoactive intestinal polypeptide-, and substance P-containing terminals were revealed by electron microscopy. Enkephalin-immunoreactive axon varicosities are filled with small, clear vesicles with a few large, cored vesicles and form asymmetric synapses; dynorphin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive axon varicosities are rich in large, dense-cored vesicles and form symmetric synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号