首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is proposed that, whereas an actual wound to a salamander limb may initiate limb regeneration, a local and developmentally programmed integumentary wound may initiate limb development. The electrophysiological changes induced by these lesions of the skin may be a common denominator linking limb regeneration and limb development. Such early electrical events are considered to initiate or guide the early accumulation of cells, and to help to produce the local environment in which a limb will arise. This scheme provides a self-limiting positive-feedback mechanism for the production of a localized area where other developmental mechanisms act in concert with endogenous electrical fields (or in their complete absence), thereby leading to limb differentiation. This hypothesis may not be restricted to limb formation; it may be of more general significance, i.e. in the process of organogenesis in embryos. One might reasonably suggest that, by such a mechanism, any developing placode (for example, auditory or olfactory placodes) might form and localize.  相似文献   

2.
鹿茸是唯一可周期性再生的哺乳动物器官,由软骨、骨、血管、神经及皮肤组织构成。鹿茸再生过程是基于干细胞的增殖和分化,且生长速度极快而不发生癌变。其不仅可作为一种肢体再生的生物医学模型,而且也作为一种研究骨组织生长发育的模型。现代组学技术快速发展,已普遍应用于生物学的各种领域。利用组学技术,在转录和蛋白质水平上,有力地推动了在分子水平上研究鹿茸生物学的进程。本综述拟对组学技术在鹿茸生物学研究中的应用进行总结回顾,并对未来的发展趋势做进一步展望,为鹿茸生物学的深入研究提供参考。  相似文献   

3.
For over two decades, we have been investigating a strong (ca. 20-100 microA/cm2), outwardly directed electric current driven through the limb stump for the first few days following amputation in regenerating salamanders. This current is driven through the stump in a proximal/distal direction by the amiloride-sensitive transcutaneous voltage of the intact skin of the stump. Limb regeneration can be manipulated by several technique that manipulate this physiology, demonstrating that the ionic current is necessary, but not sufficient, for normal regeneration of the amphibian limb. Here, we demonstrate that a full thickness graft of skin covering the forelimb stump of newts strikingly inhibits the regeneration of the limb, and that this procedure is also highly correlated to a suppression of peak outwardly directed stump currents in those animals that fail to regenerate.  相似文献   

4.
Limb regeneration ability, which can be observed in amphibians, has been investigated as a representative phenomenon of organ regeneration. Recently, an alternative experimental system called the accessory limb model was developed to investigate early regulation of amphibian limb regeneration. The accessory limb model contributed to identification of limb regeneration inducers in urodele amphibians. Furthermore, the accessory limb model may be applied to other species to explore universality of regeneration mechanisms. This review aims to connect the insights recently gained to emboss universality of regeneration mechanisms among species. The defined molecules (BMP7 (or2) + FGF2 + FGF8) can transform skin wound healing to organ (limb) regeneration responses. The same molecules can initiate regeneration responses in some species.  相似文献   

5.
In urodele amphibians, limb regeneration is dependent on innervation and is blocked by the administration of colchicine. The objective of this experiment was to determine if colchicine blocks limb regeneration by a direct action on the blastema cells or by an indirect action on the nerves, specifically, if colchicine treatment of the brachial nerves would inhibit limb regeneration in the newt Notophthalmus viridescens. Colchicine was applied to the nerves by implanting a colchicine-loaded silastin block adjacent to the brachial nerves of an amputated newt limb. With appropriate dose levels of colchicine, limb regeneration was completely inhibited. Contralateral control limbs, carrying unloaded silastin blocks, and control limbs with colchicine-loaded blocks implanted equidistant from the blastema, but not adjacent to the brachial nerves, regenerated normally. Thus, the results indicate that the colchicine inhibition of limb regeneration is mediated by colchicine effects on the nerves. The possible mechanism of colchicine action on nerves may involve either wallerian degeneration, or inhibition of axoplasmic transport, or both.  相似文献   

6.
Endogenous DC electric fields (EFs) are important, fundamental components of development, regeneration, and wound healing. The fields are the result of polarized ion transport and current flow through electrically conductive pathways. Nullification of endogenous EFs with pharmacological agents or applied EFs of opposite polarity disturbs the aforementioned processes, while enhancement increases the rate of wound closure and the extent of regeneration. EFs are applied to humans in the clinic, to provide an overwhelming signal for the enhancement of healing of chronic wounds. Although clinical trials, spanning a course of decades, have shown that applied EFs enhance healing of chronic wounds, the mechanisms by which cells sense and respond to these weak cues remains unknown. EFs are thought to influence many different processes in vivo. However, under more rigorously controlled conditions in vitro, applied EFs induce cellular polarity and direct migration and outgrowth. Here we review the generation of endogenous EFs, the results of their alteration, and the mechanisms by which cells may sense these weak fields. Understanding the mechanisms by which native and applied EFs direct development and repair will enable current and future therapeutic applications to be optimized.  相似文献   

7.
The developing neural tubes and associated neural crest cells were removed from stage 30 Ambystoma maculatum embryos to obtain larvae with aneurogenic forelimbs. Forelimbs were allowed to develop to late 3 digit or early 4 digit stages. Limbs amputated through the mid radius-ulna regenerated typically in the aneurogenic condition. Experiments were designed to test whether grafts of aneurogenic limb tissues would rescue denervated host limb stumps into a regeneration response. In Experiment 1, aneurogenic limbs were removed at the body wall and grafted under the dorsal skin of the distal end of amputated forelimbs of control, normally innervated limbs of locally collected Ambystoma maculatum or axolotl (Ambystoma mexicanum) larvae. In Experiment 1, at the time of grafting or 1, 2, 3, 4, 5, 7, or 8 days after grafting, aneurogenic limbs were amputated level with the original host stump. At 7 and 8 days, this amputation included removing the host blastema adjacent to the graft. The host limb was denervated either one day after grafting or on the day of graft amputation. These chimeric limbs only infrequently exhibited delayed blastema formation. Thus, not only did the graft not rescue the host, denervated limb, but the aneurogenic limb tissues themselves could not mount a regeneration response. In Experiment 2, the grafted aneurogenic limb was amputated through its mid-stylopodium at 3, 4, 5, 7, or 8 days after grafting. By 7 and 8 days after grafting, the host limb stump exhibited blastema formation even with the graft extending out from under the dorsal skin. The host limb was denervated at the time of graft amputation. When graft limbs of Experiment 2 were amputated and host limbs were denervated on days 3, 4, or 5, host regeneration did not progress and graft regeneration did not occur. But, when graft limbs were amputated on days 7 or 8 with concomitant denervation of the host limb, regeneration of the host continued and graft regeneration occurred. Thus, regeneration of the graft was correlated with acquisition of nerve-independence by the host limb blastema. In Experiment 3, aneurogenic limbs were grafted with minimal injury to the dorsal skin of neurogenic hosts. When neurogenic host limbs were denervated and the aneurogenic limbs were amputated through the radius/ulna, regeneration of the aneurogenic limb occurred if the neurogenic limb host was not amputated, but did not occur if the neurogenic limb host was amputated. Results of Experiment 3 indicate that the inhibition of aneurogenic graft limb regeneration on a denervated host limb is correlated with substantial injury to the host limb. In Experiment 4, aneurogenic forelimbs were amputated through the mid-radius ulna and pieces of either peripheral nerve, muscle, blood vessel, or cartilage were grafted into the distal limb stump or under the body skin immediately adjacent to the limb at the body wall. In most cases, peripheral nerve inhibited regeneration, blood vessel tissue sometimes inhibited, but other tissues had no effect on regeneration. Taken together, the results suggest: (1) Aneurogenic limb tissues do not produce the neurotrophic factor and do not need it for regeneration, and (2) there is a regeneration-inhibiting factor produced by the nerve-dependent limb stump/blastema after denervation that prevents regeneration of aneurogenic limbs.  相似文献   

8.
The nervous system plays an important role during the process of amphibian limb regeneration. However, the molecules that are involved in such a control of regeneration are largely unknown. We have attempted to map protein synthesis in the brains of intact newts and from newts undergoing limb or tail regeneration. Our results show unique protein synthesis in the brain of newts undergoing limb regeneration. Such an analysis can lead to the identification and characterization of these proteins.  相似文献   

9.
Retinoic acid (RA) has been detected in the regenerating limb of the axolotl, and exogenous RA can proximalize, posteriorize, and ventralize blastemal cells. Thus, RA may be an endogenous regulatory factor during limb regeneration. We have investigated whether endogenous retinoids are essential for patterning during axolotl (Ambystoma mexicanum) limb regeneration by using retinoid antagonists that bind to specific RAR (retinoic acid receptor) or RXR (retinoid X receptor) retinoid receptor subtypes. Retinoid antagonists (Ro41-5253, Ro61-8431, LE135, and LE540) were administered to regenerating limbs using implanted silastin blocks loaded with each antagonist. The skeletal pattern of regenerated limbs treated with Ro41-5253 or Ro61-8431 differed only slightly from control limbs. Treatment with LE135 inhibited limb regeneration, while treatment with LE540 allowed relatively normal limb regeneration. When LE135 and LE540 were implanted together, regeneration was not completely inhibited and a hand-like process regenerated. These results demonstrate that interfering with retinoid receptors can modify pattern in the regenerating limb indicating that endogenous retinoids are important during patterning of the regenerating limb.  相似文献   

10.
11.
Untreated adult newts do not undergo normal limb regeneration following hypohysectomy. A fibrocellular dermal barrier (cicatrix) atypically forms between the apical epithelium and the underlying mesenchymal tissues. Historically, continuous administration of growth hormone or of prolactin in combination with thyroxine restored regenerative capacity to these newts. In a previous investigation, we demonstrated that the initial effect of these two hormone treatments, when administered on alternate days to hypophysectomized newts beginning eight days post-amputation, was to facilitate the erosion of the fibrocellular barrier and establish the epithelial mesenchymal interface that is observed in a regenerating limb. The present investigation was designed to evaluate the necessity of continuous hormone therapy to maintain limb regeneration in hypophysectomized newts. One, two, or three injections of growth hormone or of prolactin in combination with thyroxine was administered on successive alternate days to hypophysectomized newts either immediately following limb amputation (ID) or beginning eight days post-amputation (DD). The ID and DD newts receiving one, two, or three injections of growth hormone showed evidence of regeneration to the digitiform stage by day 30 post-amputation, while those receiving prolactin and thyroxine underwent wound healing. While both hormone treatments initially promoted a dermis-free apical epithelium, only hypophysectomized newts that had received growth hormone were able to continue regenerating. We have, therefore, concluded that discontinuous growth hormone therapy is sufficient to initiate and maintain the conducive environment for limb regeneration to advanced stages in the hypophysectomized newt. While initiating this process, prolactin and thyroxine therapy on a discontinuous regime does not maintain regeneration. The direct and indirect role of growth hormone in supporting limb regeneration in normal and hypophysectomized newts is discussed.  相似文献   

12.
Do neurons in primary motor cortex encode the generative details of motor behavior, such as individual muscle activities, or do they encode high-level movement attributes? Resolving this question has proven difficult, in large part because of the sizeable uncertainty inherent in estimating or measuring the joint torques and muscle forces that underlie movements made by biological limbs. We circumvented this difficulty by considering single-neuron responses in an isometric task, where joint torques and muscle forces can be straightforwardly computed from limb geometry. The response for each neuron was modeled as a linear function of a "preferred" joint torque vector, and this model was fit to individual neural responses across variations in limb posture. The resulting goodness of fit suggests that neurons in motor cortex do encode the kinetics of motor behavior and that the neural response properties of "preferred direction" and "gain" are dual components of a unitary response vector.  相似文献   

13.
When opposing force fields are presented alternately or randomly across trials for identical reaching movements, subjects learn neither force field, a behavior termed ‘interference’. Studies have shown that a small difference in the endpoint posture of the limb reduces this interference. However, any difference in the limb’s endpoint location typically changes the hand position, joint angles and the hand orientation making it ambiguous as to which of these changes underlies the ability to learn dynamics that normally interfere. Here we examine the extent to which each of these three possible coordinate systems—Cartesian hand position, shoulder and elbow joint angles, or hand orientation—underlies the reduction in interference. Subjects performed goal-directed reaching movements in five different limb configurations designed so that different pairs of these configurations involved a change in only one coordinate system. By specifically assigning clockwise and counter-clockwise force fields to the configurations we could create three different conditions in which the direction of the force field could only be uniquely distinguished in one of the three coordinate systems. We examined the ability to learn the two fields based on each of the coordinate systems. The largest reduction of interference was observed when the field direction was linked to the hand orientation with smaller reductions in the other two conditions. This result demonstrates that the strongest reduction in interference occurred with changes in the hand orientation, suggesting that hand orientation may have a privileged role in reducing motor interference for changes in the endpoint posture of the limb.  相似文献   

14.
Deer antler regeneration: cells, concepts, and controversies   总被引:9,自引:0,他引:9  
The periodic replacement of antlers is an exceptional regenerative process in mammals, which in general are unable to regenerate complete body appendages. Antler regeneration has traditionally been viewed as an epimorphic process closely resembling limb regeneration in urodele amphibians, and the terminology of the latter process has also been applied to antler regeneration. More recent studies, however, showed that, unlike urodele limb regeneration, antler regeneration does not involve cell dedifferentiation and the formation of a blastema from these dedifferentiated cells. Rather, these studies suggest that antler regeneration is a stem-cell-based process that depends on the periodic activation of, presumably neural-crest-derived, periosteal stem cells of the distal pedicle. The evidence for this hypothesis is reviewed and as a result, a new concept of antler regeneration as a process of stem-cell-based epimorphic regeneration is proposed that does not involve cell dedifferentiation or transdifferentiation. Antler regeneration illustrates that extensive appendage regeneration in a postnatal mammal can be achieved by a developmental process that differs in several fundamental aspects from limb regeneration in urodeles.  相似文献   

15.
The necessity of injury, nerves, and wound epidermis for urodele limb regeneration is well accepted. Whether one or more of these three factors is limiting in amputated nonregenerating limbs of other vertebrates is a problem area in need of resolution. One view, that higher vertebrates possess inadequate innervation for limb regeneration to occur, is not strongly supported by experimental results. Superinnervation of lizard and mammalian limbs fails to elicit limb regeneration. Furthermore, in the well-known cases of mammalian regeneration, deer antlers and rabbit ears, a nerve requirement has not been demonstrated.
In urodeles, the wound epidermis has recently been shown to have the role of maintaining dedifferentiated cells of the amputated limb stump in the cell cycle. The result of this wound epidermal stimulus is a sufficient number of cell divisions such that blastema formation occurs.
We postulate that in amputated limbs of higher vertebrates, the wound epidermis is nonfunctional. Dedifferentiated or undifferentiated cells are not maintained in the cell cycle and blastema formation therefore does not occur. Instead, tissue regeneration occurs precociously due to lack of a cycling stimulus. The scar tissue which forms at the limb tips of nonregenerating vertebrates is the result of a nonfunctional wound epidermis.  相似文献   

16.
On alert cats the change was studied of the activity of the neurones of the sensorimotor cortical area at instrumental reaction to a simultaneous heteromodal complex stimulus. It was shown that in the projection of distal limb areas a group could be singled out of neurones, which changed their activity in one direction depending on the character of presented signals. In these cells an increase of discharges frequency was observed in response to complex stimulus, consisting of light and sound signals. After the extinction of the motor reaction both to the complex stimulus and to its components neuronal reactions of lesser intensity was recorded, what determined the absence of the motor reaction. This group of neurones had receptive fields localized on distal limb areas, it was activated at fulfillment of the movement of catching the reinforcement and belonged to neurones of the pyramidal tract. The neurones with receptive fields on the whole limb surface or changing their activity at the animal pose change, had variable reactions to positive and differentiation stimuli.  相似文献   

17.
Stem cell research has been attained a greater attention in most fields of medicine due to its potential for many incurable diseases through replacing or helping the regeneration of damaged cells or tissues. Here, we demonstrated the functional recovery and structural connection of the central nervous system pathway innervating the sciatic nerve after total transection of the spinal cord followed by the transplantation of human neural stem cells (hNSC) in the injured rat spinal cord site. The limb function of hNSC-treated group recovered dramatically compared with that in the sham group by Basso–Beattie–Bresnahan (BBB) scores. Transplanted hNSC differentiated into astrocytes and neurons in the injured site. In addition, immunohistochemistry for growth-associated protein 43 showed axonal regeneration in the injured spinal cord site. The pseudorabies viral-Ba (PRV-Ba) tracing method revealed that transplanted hNSC and their differentiated neurons showed positive labeling after sciatic nerve injection. In addition, the PRV-Ba labeling was also observed in several nuclei in the brain innervating the sciatic nerve. This result implies that the rat CNS motor pathway could be reconstructed by hNSC transplantation, and it may contribute to the functional recovery of the limb.  相似文献   

18.
The ability of cells to sense and respond to endogenous electric fields is important in processes such as wound healing, development, and nerve regeneration. In cell culture, many epithelial and endothelial cell types respond to an electric field of magnitude similar to endogenous electric fields by moving preferentially either parallel or antiparallel to the field vector, a process known as galvanotaxis. Here we report on the influence of dc electric field and confinement on the motility of fibroblast cells using a chip-based platform. From analysis of cell paths we show that the influence of electric field on motility is much more complex than simply imposing a directional bias towards the cathode or anode. The cell velocity, directedness, as well as the parallel and perpendicular components of the segments along the cell path are dependent on the magnitude of the electric field. Forces in the directions perpendicular and parallel to the electric field are in competition with one another in a voltage-dependent manner, which ultimately govern the trajectories of the cells in the presence of an electric field. To further investigate the effects of cell reorientation in the presence of a field, cells are confined within microchannels to physically prohibit the alignment seen in 2D environment. Interestingly, we found that confinement results in an increase in cell velocity both in the absence and presence of an electric field compared to migration in 2D.  相似文献   

19.
We suggest an experimental comparison of two directions for applying the time-varying magnetic fields which have been found to speed spontaneous regeneration of injured peripheral nerves and in attempts to repair spinal cord injuries. Time-varying magnetic fields induce currents in a plane perpendicular to the magnetic field direction. The lower conductivity of the spinal cord's sheath (dura matter) or of the myelin sheath of peripheral nerves would seem to confine the induced electric fields and currents to the spinal cord or nerve itself. The proposed comparison could allow choosing between two possible modes of action of the fields: (1) Magnetically-induced electric fields or currents may be encouraging ion flow or otherwise helping enzyme, channel or other interactions at the cell membrane, as is thought to be the case in field stimulation of healing in bone. This mechanism should be independent of field direction. (2) Work in developing organisms and with fields applied to nerve cells in vitro has shown that neurite growth is guided parallel to both endogenous and external electric fields. This mechanism would be effective when induced electric fields are parallel, but not when they are perpendicular to the nerve. Any experimental test should seek to produce as close as possible to the same induced current intensity with both field directions. Possible confounding factors, as well as breakdowns in the assumptions of the simple model presented here, would have to be considered. This proposal was motivated by a recent report in which the authors listed a changed field direction as one of several possible reasons for an unsuccessful experiment.  相似文献   

20.
Limb regeneration in amphibians is a representative process of epimorphosis. This type of organ regeneration, in which a mass of undifferentiated cells referred to as the "blastema" proliferate to restore the lost part of the amputated organ, is distinct from morphallaxis as observed, for instance, in Hydra, in which rearrangement of pre-existing cells and tissues mainly contribute to regeneration. In contrast to complete limb regeneration in urodele amphibians, limb regeneration in Xenopus, an anuran amphibian, is restricted. In this review of some aspects regarding adult limb regeneration in Xenopus laevis, we suggest that limb regeneration in adult Xenopus, which is pattern/tissue deficient, also represents epimorphosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号