首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological invasions represent major threats to biodiversity as well as large-scale evolutionary experiments. Invasive populations have provided some of the best known examples of contemporary evolution [3-6], challenging the classical view that invasive species are genetically depauperate because of founder effects. Yet the origin of trait genetic variance in invasive populations largely remains a mystery, precluding a clear understanding of how evolution proceeds. In particular, despite the emerging molecular evidence that multiple introductions commonly occur in the same place, their contribution to the evolutionary potential of invasives remains unclear. Here, by using a long-term field survey, mtDNA sequences, and a large-scale quantitative genetic experiment on freshwater snails, we document how a spectacular adaptive potential for key ecological traits can be accumulated in invasive populations. We provide the first direct evidence that multiple introductions are primarily responsible for such an accumulation and that sexual reproduction amplifies this effect by generating novel trait combinations. Thus bioinvasions, destructive as they may be, are not synonyms of genetic uniformity and can be hotspots of evolutionary novelty.  相似文献   

2.
A milestone in understanding a globally significant mechanism of marine bioinvasions was published 25 years ago. The transformative paper on ballast water provided a baseline of patterns, processes and predictions of marine introductions, underpinned a dramatic increase in research on the topic, and presented a foundational insight for an international approach to vector management. The 25 year anniversary of JT Carlton’s ‘Transoceanic and interoceanic dispersal of coastal marine organisms: the biology of ballast water’ coincides with an International Maritime Organization (IMO) convention for management of ballast water that has not been fully ratified. The emergence of ship biofouling as a vector of management concern worldwide has also prompted renewed efforts to reduce species transfers by ships through new policy initiatives.  相似文献   

3.
Dlugosch KM  Hays CG 《Molecular ecology》2008,17(21):4583-4585
When we set a species loose outside of its historical range, we create opportunities to test fundamental questions about how populations establish, adapt, disperse, and ultimately define range boundaries. A particularly controversial issue here is how genetic variation among and within populations contributes to the dynamics of species distributions. In this issue of Molecular Ecology, Rosenthal and colleagues (2008) seize an opportunity to examine how multiple introductions create genetically distinct establishment events and how these are incorporated into invasive spread. Their findings suggest that a particular recombinant lineage of Brachypodium sylvaticum may be responsible for most of the recent expansion of this invader, highlighting the potential importance of genetic novelty and historical context for colonization success.  相似文献   

4.
The Mediterranean fruit fly, Ceratitis capitata, is a devastating agricultural pest that threatens to become established in vulnerable areas such as California and Florida. Considerable controversy surrounds the status of Californian medfly infestations: Do they represent repeated introductions or the persistence of a resident population? Attempts to resolve this question using traditional population genetic markers and statistical methods are problematic because the most likely source populations in Latin America were themselves only recently colonized and are genetically very similar. Here, significant population structure among several New World medfly populations is demonstrated through the analysis of DNA sequence variation at four intron loci. Surprisingly, in these newly founded populations, estimates of population structure increase when measures of subdivision take into account the relatedness of alleles as well as their frequency. A nonequilibrium, likelihood-based statistical test that utilizes multilocus genotypes suggests that the sole medfly captured in California during 1996 was introduced from Latin America and was less likely to be a remnant of an ancestral Californian population. Many bioinvasions are hierarchical in nature, consisting of several sequential or overlapping invasion events, the totality of which can be termed a metainvasion. Phylogenetic data from multilocus DNA sequences will be vital to understanding the evolutionary and ecological processes that underlie metainvasions and to resolving their constituent levels.  相似文献   

5.
Recent outbreaks of new diseases in many ecosystems are caused by novel pathogens, impaired host immunity, or changing environmental conditions. Identifying the source of emergent pathogens is critical for mitigating the impacts of diseases, and understanding the cause of their recent appearances. One ecosystem suffering outbreaks of disease in the past decades is coral reefs, where pathogens such as the fungus Aspergillus sydowii have caused catastrophic population declines in their hosts. Aspergillosis is one of the best-characterized coral diseases, yet the origin of this typically terrestrial fungus in marine systems remains unknown. We examined the genetic structure of a global sample of A. sydowii, including isolates from diseased corals, diseased humans, and environmental sources. Twelve microsatellite markers reveal a pattern of global panmixia among the fungal isolates. A single origin of the pathogen into marine systems seems unlikely given the lack of isolation by distance and lack of evidence for a recent bottleneck. A neighbour-joining phylogeny shows that sea fan isolates are interspersed with environmental isolates, suggesting there have been multiple introductions from land into the ocean. Overall, our results underscore that A. sydowii is a true opportunist, with a diversity of nonrelated isolates able to cause disease in corals. This study highlights the challenge in distinguishing between the role of environment in allowing opportunistic pathogens to increase and actual introductions of new pathogenic microorganisms for coral diseases.  相似文献   

6.
Invasion success: does size really matter?   总被引:1,自引:0,他引:1  
The recent paper by Roy et al . (2001) presents a compelling relationship between range limit shifts, climatic fluctuations, and body size for marine bivalves in the fossil record. However, their extension of body size as a correlate for contemporary marine bivalve introductions is problematic and requires further scrutiny. Unlike their analysis of the fossil assemblage, the approach used for contemporary invasions does not adequately control for dispersal mechanism (vector) or source region. First, their analysis included mariculture species, intentionally introduced because of their large size, creating a vector-specific bias. Second, successful invaders from multiple source regions (Northern Hemisphere) were compared with potential invaders from a single source region (north-eastern Pacific), leaving both source and vector as uncontrolled variables. We present an analysis of body size for bivalve introductions from a single vector and source region, indicating no correlation between body size and invasion success when eliminating intentional introduction, source region and transport vector as confounding factors.  相似文献   

7.
The accelerated pace of marine biological invasions raises questions pertaining to genetic traits and dynamics underlying the successful establishment of invasive species. Current research stresses the importance of multiple introductions and prolonged gene flow as the main sources for genetic diversity, which, along with genetic drift, affect invasive species success. We here attempt to determine the relative contribution of gene flow and mutation rates as sources of genetic variability using the invasive tunicate Botryllus schlosseri as a model. The study was performed over a 13-year period in the Santa Cruz Harbor, California. With a characteristic life history of five generations/year, the Santa Cruz Botryllus population has already experienced approximately 155 generations since the onset of its invasion. The results (278 specimens, 127 scored alleles, five microsatellite loci) support limited gene flow rate (2.89?×?10?3) and relative genetic isolation. Furthermore, the study population was found to be influenced by both, genetic drift and a high mutation rate (2.47?×?10?2). These findings were supported by high fluctuations in the frequencies of microsatellite alleles, the appearance of new alleles and the loss of others. The balance between genetic drift and a high mutation rate is further elucidated by the high, stable level of genetic variation. We suggest that rapid mutation rates at the microsatellite loci reflect genome-wide phenomena, helping to maintain high genetic variability in relatively isolated populations. The potential adaptability to new environments is discussed.  相似文献   

8.
Little is known about the number and rate of introductions into terrestrial and marine tropical regions, and if introduction patterns and processes differ from temperate latitudes. Botryllid ascidians (marine invertebrate chordates) are an interesting group to study such introduction differences because several congeners have established populations across latitudes. While temperate botryllid invasions have been repeatedly highlighted, the global spread of tropical Botrylloides nigrum (Herdman, 1886) has been largely ignored. We sampled B. nigrum from 16 worldwide warm water locations, including around the Panama Canal, one of the largest shipping hubs in the world and a possible introduction corridor. Using mitochondrial (COI) and nuclear (ANT) markers, we discovered a single species with low genetic divergence and diversity that has established in the Atlantic, Pacific, Indo‐Pacific, and Mediterranean Oceans. The Atlantic Ocean contained the highest diversity and multilocus theta estimates and may be a source for introductions to other regions. A high frequency of one mitochondrial haplotype was detected in Pacific populations that may represent a recent introduction in this region. In comparison to temperate relatives, B. nigrum displayed lower (but similar to temperate Botrylloides violaceus) genetic divergence and diversity at both loci that may represent a more recent global spread or differences in introduction pressures in tropical regions. Additionally, chimeras (genetically distinct individuals sharing a single body) were detected in three populations by the mitochondrial locus and validated using cloning, and these individuals contained new haplotype diversity not detected in any other colonies.  相似文献   

9.
Microevolution in biological control: Mechanisms, patterns, and processes   总被引:4,自引:2,他引:2  
Microevolution may determine both the safety and efficacy of classical biological control. Despite a growing body of literature, there are several key unanswered questions regarding the role of evolution in biological control: (1) How common is local adaptation of natural enemies to their hosts or the environment in the native range? How critical is it for success of biological control to find locally adapted agents for importation? (2) Does adaptive evolution following introductions play an important role in biological control? (3) Do introductions of biological control agents impose bottlenecks in population size that reduce genetic variation, and is reduced genetic variation associated with low fitness and poor performance? (4) How great is the risk of evolution of host range of biological control agents? (5) What is the risk of target pests evolving resistance to biological control agents? If pests evolve increased resistance, will biological control agents evolve mechanisms to overcome that resistance? Here, we review the four fundamental processes of microevolution, and discuss how they interact in the context of biological control. We discuss our current state of knowledge regarding the outstanding questions, highlight the types of experiments that can address them, and suggest ways to use microevolution to define risks, and enhance efficacy and safety of biological control.  相似文献   

10.
The American bullfrog, Rana (Lithobates) catesbeianus, is endemic to eastern North America, but has been introduced to approximately 40 countries on four continents and is considered one of the hundred worst invasive alien species in the world. Here, we investigated the genetics of invasive bullfrogs in the Willamette Valley, Oregon, USA, where bullfrogs are widespread and abundant to determine: (1) the minimum number of bullfrog introductions; (2) the native source population(s); and (3) whether genetic variation is reduced compared to source populations. To answer these questions, we analyzed partial sequences of the mitochondrial cytochrome b gene for 251 bullfrogs from the Willamette Valley and the native range. We found that bullfrogs from the Mississippi River basin and Great Lakes region were introduced at least once to the Willamette Valley. Genetic variation measured as haplotype diversity (h) and nucleotide diversity (?? n ) was not significantly different between Willamette Valley and source populations. Our results were in contrast to a recent genetic analysis of invasive bullfrog populations in Europe, which found that genetic variation in European bullfrog populations was much lower than in source populations. European bullfrogs also originated from different source populations than Willamette Valley bullfrogs. The difference in genetic composition between Willamette Valley and European bullfrogs is likely due to differences in their invasion histories and may have implications for the potential of bullfrogs in these different regions to adapt and expand.  相似文献   

11.
Invasive species are predicted to suffer from reductions in genetic diversity during founding events, reducing adaptive potential. Integrating evidence from two literature reviews and two case studies, we address the following questions: How much genetic diversity is lost in invasions? Do multiple introductions ameliorate this loss? Is there evidence for loss of diversity in quantitative traits? Do invaders that have experienced strong bottlenecks show adaptive evolution? How do multiple introductions influence adaptation on a landscape scale? We reviewed studies of 80 species of animals, plants, and fungi that quantified nuclear molecular diversity within introduced and source populations. Overall, there were significant losses of both allelic richness and heterozygosity in introduced populations, and large gains in diversity were rare. Evidence for multiple introductions was associated with increased diversity, and allelic variation appeared to increase over long timescales (~100 years), suggesting a role for gene flow in augmenting diversity over the long‐term. We then reviewed the literature on quantitative trait diversity and found that broad‐sense variation rarely declines in introductions, but direct comparisons of additive variance were lacking. Our studies of Hypericum canariense invasions illustrate how populations with diminished diversity may still evolve rapidly. Given the prevalence of genetic bottlenecks in successful invading populations and the potential for adaptive evolution in quantitative traits, we suggest that the disadvantages associated with founding events may have been overstated. However, our work on the successful invader Verbascum thapsus illustrates how multiple introductions may take time to commingle, instead persisting as a ‘mosaic of maladaptation’ where traits are not distributed in a pattern consistent with adaptation. We conclude that management limiting gene flow among introduced populations may reduce adaptive potential but is unlikely to prevent expansion or the evolution of novel invasive behaviour.  相似文献   

12.
Multiple introductions are key features for the establishment and persistence of introduced species. However, little is known about the contribution of genetic admixture to the invasive potential of populations. To address this issue, we studied the recent invasion of the Asian tiger mosquito (Aedes albopictus) in Europe. Combining genome‐wide single nucleotide polymorphisms and historical knowledge using an approximate Bayesian computation framework, we reconstruct the colonization routes and establish the demographic dynamics of invasion. The colonization of Europe involved at least three independent introductions in Albania, North Italy and Central Italy that subsequently acted as dispersal centres throughout Europe. We show that the topology of human transportation networks shaped demographic histories with North Italy and Central Italy being the main dispersal centres in Europe. Introduction modalities conditioned the levels of genetic diversity in invading populations, and genetically diverse and admixed populations promoted more secondary introductions and have spread farther than single‐source invasions. This genomic study provides further crucial insights into a general understanding of the role of genetic diversity promoted by modern trade in driving biological invasions.  相似文献   

13.
Species introductions often bring together genetically divergent source populations, resulting in genetic admixture. This geographic reshuffling of diversity has the potential to generate favourable new genetic combinations, facilitating the establishment and invasive spread of introduced populations. Observational support for the superior performance of admixed introductions has been mixed, however, and the broad importance of admixture to invasion questioned. Under most underlying mechanisms, admixture's benefits should be expected to increase with greater divergence among and lower genetic diversity within source populations, though these effects have not been quantified in invaders. We experimentally crossed source populations differing in divergence in the invasive plant Centaurea solstitialis. Crosses resulted in many positive (heterotic) interactions, but fitness benefits declined and were ultimately negative at high source divergence, with patterns suggesting cytonuclear epistasis. We explored the literature to assess whether such negative epistatic interactions might be impeding admixture at high source population divergence. Admixed introductions reported for plants came from sources with a wide range of genetic variation, but were disproportionately absent where there was high genetic divergence among native populations. We conclude that while admixture is common in species introductions and often happens under conditions expected to be beneficial to invaders, these conditions may be constrained by predictable negative genetic interactions, potentially explaining conflicting evidence for admixture's benefits to invasion.  相似文献   

14.
In recent years, new analytical tools have allowed researchers to extract historical information contained in molecular data, which has fundamentally transformed our understanding of processes ruling biological invasions. However, the use of these new analytical tools has been largely restricted to studies of terrestrial organisms despite the growing recognition that the sea contains ecosystems that are amongst the most heavily affected by biological invasions, and that marine invasion histories are often remarkably complex. Here, we studied the routes of invasion and colonisation histories of an invasive marine invertebrate Microcosmus squamiger (Ascidiacea) using microsatellite loci, mitochondrial DNA sequence data and 11 worldwide populations. Discriminant analysis of principal components, clustering methods and approximate bayesian computation (ABC) methods showed that the most likely source of the introduced populations was a single admixture event that involved populations from two genetically differentiated ancestral regions--the western and eastern coasts of Australia. The ABC analyses revealed that colonisation of the introduced range of M. squamiger consisted of a series of non-independent introductions along the coastlines of Africa, North America and Europe. Furthermore, we inferred that the sequence of colonisation across continents was in line with historical taxonomic records--first the Mediterranean Sea and South Africa from an unsampled ancestral population, followed by sequential introductions in California and, more recently, the NE Atlantic Ocean. We revealed the most likely invasion history for world populations of M. squamiger, which is broadly characterized by the presence of multiple ancestral sources and non-independent introductions within the introduced range. The results presented here illustrate the complexity of marine invasion routes and identify a cause-effect relationship between human-mediated transport and the success of widespread marine non-indigenous species, which benefit from stepping-stone invasions and admixture processes involving different sources for the spread and expansion of their range.  相似文献   

15.
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. In the last century, guppies, Poecilia reticulata, repeatedly invaded streams in Australia and elsewhere. Quantitative genetic studies of one Australian guppy population have demonstrated high additive genetic variation for autosomal and Y-linked morphological traits. The combination of colonization success, high heritability of morphological traits, and the possibility of multiple introductions to Australia raised the prediction that neutral genetic diversity is high in introduced populations of guppies. In this study we examine genetic diversity at nine microsatellite and one mitochondrial locus for seven Australian populations. We used mtDNA haplotypes from the natural range of guppies and from domesticated varieties to identify source populations. There were a minimum of two introductions, but there was no haplotype diversity within Australian populations, suggesting a founder effect. This was supported by microsatellite markers, as allelic diversity and heterozygosity were severely reduced compared to one wild source population, and evidence of recent bottlenecks was found. Between Australian populations little differentiation of microsatellite allele frequencies was detected, suggesting that population admixture has occurred historically, perhaps due to male-biased gene flow followed by bottlenecks. Thus success of invasion of Australia and high additive genetic variance in Australian guppies are not associated with high levels of diversity at molecular loci. This finding is consistent with the release of additive genetic variation by dominance and epistasis following inbreeding, and with disruptive and negative frequency-dependent selection on fitness traits.  相似文献   

16.
Studies of bioinvasions have revealed various strategies of invasion, depending on the ecosystem invaded and the alien species concerned. Here, we consider how migration (as a demographic factor), as well as ecological and evolutionary changes, affect invasion success. We propose three main theoretical scenarios that depend on how these factors generate the match between an invader and its new environment. Our framework highlights the features that are common to, or differ among, observed invasion cases, and clarifies some general trends that have been previously highlighted in bioinvasions. We also suggest some new directions of research, such as the assessment of the time sequence of demographic, genetic and environmental changes, using detailed temporal surveys.  相似文献   

17.
18.
There is growing realisation that integrating genetics and ecology is critical in the context of biological invasions, since the two are explicitly linked. So far, the focus of ecological genetics of invasive alien species (IAS) has been on determining the sources and routes of invasions, and the genetic make-up of founding populations, which is critical for defining and testing ecological and evolutionary hypotheses. However an ecological genetics approach can be extended to investigate questions about invasion success and impacts on native, recipient species. Here, we discuss recent progress in the field, provide overviews of recent methodological advances, and highlight areas that we believe are of particular interest for future research. First, we discuss the main insights from studies that have inferred source populations and invasion routes using molecular genetic data, with particular focus on the role of genetic diversity, adaptation and admixture in invasion success. Second, we consider how genetic tools can lead to a better understanding of patterns of dispersal, which is critical to predicting the spread of invasive species, and how studying invasions can shed light on the evolution of dispersal. Finally, we explore the potential for combining molecular genetic data and ecological network modelling to investigate community interactions such as those between predator and prey, and host and parasite. We conclude that invasions are excellent model systems for understanding the role of natural selection in shaping phenotypes and that an ecological genetics approach offers great potential for addressing fundamental questions in invasion biology.  相似文献   

19.
J R W Russell  J R Pannell 《Heredity》2015,115(3):262-272
The introduction of invasive species to new locations (that is, biological invasions) can have major impact on biodiversity, agriculture and public health. As such, determining the routes and modality of introductions with genetic data has become a fundamental goal in molecular ecology. To assist with this goal, new statistical methods and frameworks have been developed, such as approximate Bayesian computation (ABC) for inferring invasion history. Here, we present a model of invasion accounting for multiple introductions from a single source (MISS), a heretofore largely unexplored model. We simulate microsatellite data to evaluate the power of ABC to distinguish between single and multiple introductions from the same source, under a range of demographic parameters. We also apply ABC to microsatellite data from three invasions of bumblebee in New Zealand. In addition, we assess the performance of several methods of summary statistics selection. Our simulated results suggested good ability to distinguish between one- and two-wave models over much but not all of the parameter space tested, independent of summary statistics used. Globally, parameter estimation was good except for bottleneck timing. For one of the bumblebee species, we clearly rejected the MISS model, while for the other two we found inconclusive results. Since a second wave may provide genetic reinforcement to initial colonists, help relieve inbreeding among founders, or increase the hazard of the invasion, its detection may be crucial for managing invasions; we suggest that the MISS model could be considered as a potential model in future theoretical and empirical studies of invasions.  相似文献   

20.
The dramatic increase in marine bio‐invasions, particularly of non‐indigenous ascidians, has highlighted the vulnerability of marine ecosystems and the productive sectors that rely on them. A critical issue in managing invasive species is determining the relative roles of ongoing introductions, versus the local movement of propagules from established source populations. Styela clava (Herdman, 1882), the Asian clubbed tunicate, once restricted to the Pacific shores of Asia and Russia, is now abundant throughout the northern and southern hemispheres and has had significant economic impact in at least one site of incursion. In 2005 S. clava was identified in New Zealand. The recent introduction of this species, coupled with its restricted distribution, provided an ideal model to compare and contrast the introduction and expansion process. In this study, the mitochondrial DNA cytochrome oxidase subunit I gene (COI) gene and 11 microsatellite markers were used to test the regional genetic structure and diversity of 318 S. clava individuals from 10 populations within New Zealand. Both markers showed significant differentiation between the northern and southern populations, indicative of minimal pre‐ or post‐border connectivity. Additional statistics further support pre‐ and post‐border differentiation among Port and Harbour populations (i.e. marinas and aquaculture farms). We conclude that New Zealand receives multiple introductions, and that the primary vector for pre‐border incursions and post‐border spread is most likely the extensive influx of recreational vessels that enter northern marinas independent of the Port. This is a timely reminder of the potential for hull‐fouling organisms to expand their range as climates change and open new pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号