首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 169 毫秒
1.
2.
Several mammalian alpha(1,3)fucosyltransferases (alpha[1,3]Fuc-T) that synthesize carbohydrates containing alpha(1,3)fucosylated lactosamine units have been identified. Although Chinese hamster ovary (CHO) cells do not express alpha(1,3)Fuc-T activity, the rare mutants LEC11 and LEC12, isolated after mutagenesis or DNA transfection, each express an alpha(1,3)Fuc-T that may be distinguished by several criteria. Two new CHO mutants possessing alpha(1,3)Fuc-T activity (LEC29 and LEC30) have now been isolated after treatment of a CHO cell population with 5-azacytidine (5-AzaC), ethylnitrosourea (ENU), or 5-AzaC followed by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). Like LEC12, both mutants possess an N-ethylmaleimide-resistant alpha(1,3)Fuc-T activity that can utilize a variety of acceptors and both express the Lewis X (Lex) determinant (Gal beta[1,4](Fuc alpha[1,3])GlcNAc beta 1)) but not the sialyl alpha(2,3)Lex determinant on cell-surface carbohydrates. However, LEC29 and LEC30 may be distinguished from LEC11 and LEC12, as well as from each other, on the basis of their unique patterns of lectin resistance and their abilities to bind the VIM-2 monoclonal antibody that recognizes carbohydrates terminating in NeuNAc alpha(2,3)Gal beta(1,4)GlcNAc beta(1,3)Gal beta(1,4)(Fuc alpha[1,3])GlcNAc beta and also by the different in vitro substrate specificities and kinetic properties of their respective alpha(1,3)Fuc-T activities. The combined data provide good evidence that the LEC29 and LEC30 alpha(1,3)Fuc-Ts are novel transferases encoded by distinct gene products.  相似文献   

3.
4.
In previous studies, Chinese hamster ovary (CHO) cell genomic DNA transfectants that expressed a human alpha(1,3)-fucosyltransferase (alpha(1,3)Fuc-T) gene were isolated and shown to possess a common approximately 7.5-kilobase (kb) EcoRI fragment that hybridized to an Alu probe (Potvin, B., Kumar, R., Howard, D. R., and Stanley, P. (1990) J. Biol. Chem. 265, 1615-1622). One of these transfectants was used to make a genomic DNA library in lambda ZAP-II from EcoRI-digested, size-selected (6-8 kb) DNA, and plaques that hybridized to an Alu probe were purified. After in vivo excision, two plasmids with DNA inserts greater than or equal to 6 kb were obtained and one of these (D2.1) conferred human alpha(1,3)-Fuc-T activity on CHO transfectants. A partial restriction map of this clone revealed an approximately 3.6-kb PstI fragment that contained an Alu sequence. This fragment was subcloned into pGEM-3Zf(+) and compared by restriction analyses with a previously described approximately 3.6-kb PstI DNA fragment isolated from a human peripheral blood lymphocyte library and shown to encode an alpha(1,3)-Fuc-T gene (Lowe, J. B., Stoolman, L. M., Nair, R. P., Larsen, R. D., Berhend, T. L., and Marks, R. M. (1990) Cell 63, 475-484). Both approximately 3.6-kb fragments gave identical restriction patterns. In addition, they both caused CHO transfectants to synthesize the Lex determinant Gal beta(1,4)[Fuc alpha(1,3)]GlcNAc beta 1 but not the alpha(2,3)-sialyl-Lex determinant. As expected, these transfectants did not bind to ELAM-1 on activated endothelial cells, since sialyl-Lex is a carbohydrate ligand recognized by ELAM-1. Surprisingly, however, an open reading frame encoded within the approximately 3.6-kb PstI fragment had a sequence identical to that of ELFT, an alpha(1,3)-Fuc-T previously reported to confer ELAM-1 binding on a previously reported to confer ELAM-1 binding on a CHO transfectant (Goelz, S. E., Hession, C., Goff, D., Griffiths, B., Tizard, R., Newman, B., Chi-Rosso, G., and Lobb, R., (1990) Cell 63, 1349-1356). Possible explanations for these apparently disparate results are discussed.  相似文献   

5.
We report here the application of a genetic approach to identify and isolate human DNA sequences controlling the expression of a GDP-L-fucose: beta-D-galactoside 2-alpha-L-fucosyltransferase [alpha-1,2)fucosyltransferase). Mouse L cells were chosen as host cells for this scheme since they express the necessary substrate and acceptor molecules for surface display of blood group H Fuc alpha 1----2 G al linkages constructed by (alpha-1,2) fucosyltransferases. However, they do not express cell surface blood group H structures nor detectable (alpha-1,2)fucosyltransferase activity. We therefore asked if (alpha-1,2)fucosyltransferase activity could be expressed and detected in these cells after transfection with human DNA sequences. These cells were transfected with genomic DNA isolated from a human cell line (A431) that expresses (alpha-1,2)fucosyltransferase. A panning procedure and fluorescence-activated cell sorting were used to isolate a mouse transfectant cell line that expresses cell surface H Fuc alpha 1----2 Gal linkages and a cognate (alpha-1,2)fucosyltransferase. Southern blot analysis showed that the genome of this cell line contains several hundred kilobase pairs of human DNA. Genomic DNA from this primary transfectant was used to transfect mouse L cells, and several independent, H-expressing secondary transfectants were isolated by immunological selection. Each expresses an (alpha-1,2)fucosyltransferase. Southern blot analysis demonstrated that the genome of each secondary transfectant contains common, characteristic human DNA restriction fragments. These results show that transfected human DNA sequences determine expression of the (alpha-1,2)fucosyltransferases in the mouse transfectants, that these sequences represent a single locus, and that they are within or linked to specific human restriction fragments identifiable in each secondary transfectant. These sequences may represent a human (alpha-1,2)fucosyltransferase gene.  相似文献   

6.
7.
We have cloned a full-length human ornithine decarboxylase (ODC)-encoding gene from a genomic library of human myeloma cells which overproduce ODC due to a selective gene amplification. Correct expression of the cloned gene was assessed by transfecting it into a Chinese hamster ovary (CHO) cell mutant devoid of ODC activity. Transfection with a 10-kb BamHI DNA fragment of the genomic clone, conferred ODC activity to the recipient cells and relieved them of dependence on exogenous polyamines for growth. A set of 40 transformants was isolated, eight of which were further characterized. The transfected ODC gene appeared to be hypomethylated at the cytosine residues in the sequence CpG. The transfectants were all responsive to serum stimulation, but showed different levels of ODC expression depending on both copy number and integration site of the transfected ODC gene. ODC serum induction in the transfectants was sensitive to cycloheximide and polyamine additions, and the half-life of the enzyme was very short, like that in normal CHO cells. These results suggest that the human ODC gene we transfected contains all the elements needed for normal control of ODC expression.  相似文献   

8.
P-selectin on platelets and endothelial cells and E-selectin on endothelial cells are leukocyte receptors that recognize lineage-specific carbohydrates on neutrophils and monocytes. The proposed ligands for these receptors contain the Le(x) core and sialic acid. Since other investigators have shown that both E-selectin and P-selectin bind to sialylated Le(x), we evaluated whether E-selectin and P-selectin recognize the same counter-receptor on leukocytes. The interaction of HL60 cells with Chinese hamster ovary (CHO) cells expressing P-selectin or E-selectin was studied. To determine whether a protein component is required in addition to sialyl Le(x) for either P-selectin or E-selectin recognition, HL60 cells or neutrophils were digested with proteases, including chymotrypsin, elastase, proteinase Glu-C, ficin, papain, or thermolysin. Cells treated with these proteases bound E-selectin but not P-selectin. Fucosidase or neuraminidase treatment of HL60 cells markedly decreased binding to both E-selectin- and P-selectin-expressing CHO cells. Growth of HL60 cells in tunicamycin inhibited the ability of these cells to support P-selectin-mediated binding and, to a lesser extent, E-selectin-mediated binding. Purified P-selectin inhibited CHO:P-selectin binding to HL60 cells, but incompletely inhibited CHO:E-selectin binding to HL60 cells. However, purified soluble E-selectin inhibited CHO:P-selectin and CHO:E-selectin binding to HL60 cells equivalently and completely. COS cells, unable to bind to E-selectin or P-selectin, bound E-selectin but not P-selectin upon transfection with alpha-1,3-fucosyltransferase or alpha-1,3/1,4-fucosyltransferase. Similarly, LEC 11 cells expressing sialyl Le(x) bound E-selectin- but not P-selectin-expressing CHO cells. Sambucus nigra lectin, specific for the sialyl-2,6 beta Gal/GalNAc linkage, inhibited P-selectin but not E-selectin binding to HL60 cells. Although sialic acid and Le(x) are components of the P-selectin ligand and the E-selectin ligand, these results indicate that the ligands are related, having overlapping specificities, but are structurally distinct. A protein component containing sialyl Le(x) in proximity to sialyl-2,6 beta Gal structures on the P-selectin ligand may contribute to its specificity for P-selectin.  相似文献   

9.
10.
Histoplasma capsulatum is a dimorphic fungus that causes respiratory and systemic disease and is capable of surviving and replicating within macrophages. The virulence of Histoplasma has been linked to cell wall alpha-(1,3)-glucan; however, the role of this polysaccharide during infection, its organization within the cell wall, and its synthesis and regulation remain poorly understood. To identify genes involved in the biosynthesis of alpha-(1,3)-glucan, we employed a forward genetics strategy to isolate physically marked mutants with reduced alpha-(1,3)-glucan. Insertional mutants were generated in a virulent strain of H. capsulatum by optimization of Agrobacterium tumefaciens-mediated transformation. Approximately 90% of these mutants possessed single insertions with no chromosomal rearrangements or deletions in the host genome. To confirm the role and specificity of identified candidate genes, we phenocopied the disrupted locus by either RNA interference or targeted gene deletion. Our findings indicate alpha-(1,3)-glucan production requires the function of the AMY1 gene product, a novel protein with homology to the alpha-amylase family of glycosyl hydrolases, and UGP1, a UTP-glucose-1-phosphate uridylyltransferase which synthesizes UDP-glucose monomers. Loss of AMY1 function attenuated the ability of Histoplasma to kill macrophages and to colonize murine lungs.  相似文献   

11.
12.
Previous studies have indicated that transfection of NIH3T3 cells with the ras oncogene induced modifications of the terminal glycosylation of N-linked glycans which appeared in the early stage after transfection. These changes affected especially the terminal part of N-linked glycans which is substituted with alpha-1,3-Gal residues in NIH3T3 and with Neu5Ac residues in the ras-transformed counterpart. We have transformed NIH3T3 cells with the human c-Ha-ras oncogene, evaluated tumorigenicity and metastatic capacity in vivo and compared alpha-1,3-galactosyltransferase, alpha-2,3- and alpha-2,6-sialyltransferases activities. By using different specific acceptors, we detected the enhancement of sialic acid transfer in transformed cells while the activity of alpha-1,3-galactosyltransferase remained unchanged. We showed that the higher sialyltransferase activity was due to the increase of beta-galactoside alpha-2,6-sialyltransferase in ras-transfectant although alpha-2,3-sialyltransferase was weakly expressed in these cells. On the basis of binding of different lectins, we correlated these observations with changes of protein glycosylation. We concluded that altered glycosylation of ras-transformed NIH3T3 is the result of a competitive effect of the enzymes acting for terminal glycosylation of N-linked glycans and the reflection of the higher expression of alpha-2,6-sialyltransferase.  相似文献   

13.
14.
Biochemical and genetic evidence indicates that the human genome may encode four or more distinct GDP-fucose:beta-D-N-acetylglucosaminide 3-alpha-L-fucosyltransferase (alpha(1,3)fucosyltransferase) activities. Genes encoding two of these activities have been previously isolated. These correspond to an alpha(1,3/1,4)fucosyltransferase thought to represent the human Lewis blood group locus and an alpha(1,3)fucosyltransferase expressed in the myeloid lineage. We report here the molecular cloning and expression of a third human alpha(1,3)fucosyltransferase gene, homologous to but distinct from the two previously reported human fucosyltransferase genes. When expressed in transfected mammalian cells, this gene determines expression of a fucosyltransferase capable of using N-acetyllactosamine to form the Lewis x epitope, and alpha(2,3)sialyl-N-acetyllactosamine to construct the sialyl Lewis x moiety. This enzyme shares 91% amino acid sequence identity with the human Lewis blood group alpha(1,3/1,4)fucosyltransferase, yet exhibits only trace amounts of alpha(1,4)fucosyltransferase activity. Polymerase chain reaction analyses were used to demonstrate that the gene is syntenic to the Lewis locus on chromosome 19. These analyses also excluded the possibility that this DNA segment represents an allele of the Lewis locus that encodes alpha(1,3)fucosyltransferase but not alpha(1,4)fucosyltransferase activity. These results are consistent with the hypothesis that this gene encodes the human "plasma type" alpha(1,3)fucosyltransferase, and suggest a molecular basis for a family of human alpha(1,3)fucosyltransferase genes.  相似文献   

15.
Chinese hamster ovary (CHO) glycosylation mutants provide an approach to cloning mammalian glycosyltransferases by transfection and gene rescue. In this paper, complementation of the lec1 CHO mutation by human DNA is described. Lec1 transfectants expressed human N-acetylglucosaminyltransferase I (GlcNAc-TI) activity and possessed common human DNA fragments. Cloning of GlcNAc-TI should therefore be possible.  相似文献   

16.
Histoplasma capsulatum is a fungal pathogen that causes respiratory and systemic disease by proliferating within macrophages. While much is known about histoplasmosis, only a single virulence factor has been defined, in part because of the inefficiency of Histoplasma reverse genetics. As an alternative to allelic replacement, we have developed a telomeric plasmid-based system for silencing gene expression in Histoplasma by RNA interference (RNAi). Episomal expression of long RNAs that form stem-loop structures triggered gene silencing. To test the effectiveness of RNAi in Histoplasma, we depleted expression of a gfp transgene as well as two endogenous genes, ADE2 and URA5, and showed significant reductions in corresponding gene function. Silencing was target gene specific, stable during macrophage infection and reversible. We used RNAi targeting AGS1 (encoding alpha-(1,3)-glucan synthase) to deplete levels of alpha-(1,3)-glucan, a cell wall polysaccharide. Loss of alpha-(1,3)-glucan by RNAi yielded phenotypes indistinguishable from an AGS1 deletion: attenuation of the ability to kill macrophages and colonize murine lungs. This demonstrates for the first time that alpha-(1,3)-glucan is an important contributor to Histoplasma virulence.  相似文献   

17.
构建肿瘤易感基因101(TSG101)基因的小干扰RNA载体并将其转导入HL-60细胞,获得稳定转染的阳性克隆后,应用RT-PCR和Western印迹进行鉴定;MTT法和流式细胞仪检测细胞转染前后生长速度和细胞周期的变化;DNA梯带(ladder)法和流式细胞仪检测细胞对顺铂诱导的凋亡的变化;Western印迹检测耐药相关蛋白P-gp和MRP的表达变化。结果表明,成功构建了TSG101的小干扰RNA载体;经蛋白质水平检测证实成功建立了稳定的TSG101低表达的白血病细胞模型;转染TSG101小干扰RNA后的细胞生长速度显著减慢,出现G1期阻滞;对顺铂的敏感性明显增强,形成DNA条带,且低表达P-gp。因此,下调TSG101基因能抑制HL-60细胞生长,增加细胞对化疗药物的敏感性,并提示该基因具有进行白血病基因治疗的可行性。  相似文献   

18.
19.
Mouse P19 embryonal carcinoma (EC) cells express on their surfaces a Thy-1 glycoprotein. The expression of Thy-1 at the mRNA and protein levels is down-regulated during differentiation induced by retinoic acid (RA). Thy-1 is also expressed in human NTERA-2 EC cells, but its expression is not down-regulated during RA-induced differentiation. As a first step towards understanding differential regulation of the mouse and human Thy-1 gene in EC cells, we have introduced genomic DNA fragments encompassing the mouse or human Thy-1 gene into NTERA-2 and P19-derived cells and analyzed surface properties of the transfectants. In the transient transfection assay, both mouse and human Thy-1 genes were expressed on cell surfaces at comparable levels. P19-derived stable transfectants exhibited great clonal variations in the expressions of the transfected Thy-1 gene products, which in part reflected copy numbers. There was no simple correlation between the expression of the transfected Thy-1 gene and two stem cell surface markers, TEC-1 and TEC-4. In the course of differentiation induced by RA several clones with a surface phenotype of EC cells exhibited a significant decrease in the expression of the transfected mouse Thy-1, whereas expression of the human Thy-1 was less efficiently down-regulated. The results suggest the presence of multiple cis- and trans-acting elements controlling expression of the mouse and human Thy-1 genes in P19 EC cells and their differentiated derivatives.  相似文献   

20.
Replicating activity of SV40 origin-containing plasmid was tested in human cells as well as in monkey CosI cells. All the plasmids possessing SV40 ori sequences could replicate, even in the absence of SV40 T antigen, in human HL-60 and Raji cells which are expressing c-myc gene at high level. The copy numbers of the replicated plasmids in these human cells were 1/100 as high as in monkey CosI cells which express SV40 T antigen constitutively. Exactly the same plasmids as the transfected original ones were recovered from the Hirt supernatant of the transfected HL-60 cells. Furthermore, replication of the SV40 ori-containing plasmids in HL-60 cells was inhibited by anti-c-myc antibody co-transfected into the cells. These results indicate that the c-myc protein can be substituted for SV40 T antigen in SV40 DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号