首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Carbon-limited chemostat cultures of Klebsiella aerogenes NCTC 418 consumed more oxygen per unit of cell synthesis when growing on mannitol or glycerol than when growing on glucose; and since the maintenance requirements were similar, this suggested that the extra reducing equivalents present in these compounds were oxidized wastefully. By comparison with carbon-limited cultures, carbon-sufficient cultures that were ammonia-, sulphate- or phosphate-limited generally consumed considerably more oxygen per unit of cell synthesis, particularly at low growth rates. Thus, according to the theory of Pirt, these carbon-sufficient cultures had a greatly increased maintenance energy requirement but nevertheless used the remaining energy with a much increased efficiency compared with carbon-limited cultures. This, we suggest, is a false conclusion which stems from the basic assumption that the maintenance requirement does not change with growth rate. Thus we propose an alternative theory which allows for this possibility, and present evidence to show that it may be applicable to both carbon-limited and carbon-sufficient chemostat cultures. Finally we offer an explanation of the high maintenance rate of oxygen consumption found with carbon-sufficient cultures, and consider this phenomenon in relation to the loose coupling between respiration and growth extant in most microbial cultures.  相似文献   

2.
Klebsiella aerogenes NCTC 418 was grown anaerobically in chemostat culture with glycerol as source of carbon and energy. Glycerol-limited cultures did not ferment the carbon source with maximal efficiency but produced considerable amounts of 1,3-propanediol. The fraction of glycerol converted to this product depended on the growth rate and on the limitation: faster growing cells produced relatively more of this compound. Under glycerol excess conditions the energetic efficiency of fermentation was decreased due to the high 1,3-propanediol excretion rate. Evidence is presented that 1,3-propanediol accumulation exerts a profound effect on the cells' metabolic behaviour.When steady state glycerol-limited cultures were instantaneously relieved of the growth limitation a vastly enhanced glycerol uptake rate was observed, accompanied by a shift in the fermentation pattern towards 1,3-propanediol and acetate. This observation was consistent with the extremely high glycerol dehydrogenase activity that was measured in vitro. Some mechanisms that could be responsible for the energy dissipation during this response are discussed.  相似文献   

3.
The metabolism of gluconate by Klebsiella pneumoniae NCTC 418 was studied in continuous culture. Under all gluconate-excess conditions at low culture pH values (pH 4.5–5.5) the majority (70–90%) of the gluconate metabolized was converted to 2-oxogluconate via gluconate dehydrogenase (GADH), although specific 2-oxogluconate production rates under potassium-limited conditions were significantly lower than under other gluconate-excess conditions. At high culture pH values, metabolism shifted towards production of acetate. Levels of GADH were highest at low culture pH values and synthesis was stimulated by the presence of (high concentrations of) gluconate. An increase in activity of the tricarboxylic acid cycle was accompanied by a decrease in GADH activity in vivo and in vitro, suggesting that the GADH serves a role as an alternative energy-generating system. Anaerobic 2-oxogluconate production was found to be possible in the presence of nitrate as electron acceptor. Levels of gluconate kinase were highest when K. pneumoniae was grown under gluconate-limited conditions. Under carbon-excess conditions, levels of this enzyme correlated with the intracellular catabolic flux.Abbreviations GADH gluconate dehydrogenase (EC 1.1.99.3) - GAK gluconate kinase (EC 2.7.1.12) - GDH glucose dehydrogenase (EC 1.1.99.17) - PQQ pyrroloquinoline quinone [2,7,9-tricarboxy-1-H-pyrrolo (2,3-f) quinoline-4,5-dione] - TCA trichloroacetic acid  相似文献   

4.
When cell-saturating amounts of glucose and phosphate were added to steady state cultures ofKlebsiella aerogenes that were, respectively, glucose-and phosphate-limited, the organisms responded immediately with an increased oxygen consumption rate. This suggested that in neither case was glucose transport the rate-limiting process, and also that organisms must posses effective mechanisms for spilling the excess energy initially generated when a growth-limitation is temporarily relieved.Steady state cultures of mannitol- or glucose-limited organisms also seemingly generated energy at a greater rate than was required for cell synthesis since gluconate-limited cultures consumed oxygen at a lower rate, at each corresponding growth rate, than did mannitol- or glucose-limited cultures, and there-fore expressed a higherY o value. Thus, mannitol- and glucose-limitations must be essentially carbon (and not energy) limitations. The excess energy generated by glucose metabolism is one component of maintenance and could be used at lower growth rates to maintain an increased solute gradient across the cell membrane, imposed by the addition of 2%, w/v, NaCl to the growth environment.The maintenance rates of oxygen consumption ofK. aerogenes also could be caused to increase by adding glucose discontinuously (drop-wise) to a glucose-limited chemostat culture, or by exchanging nitrate for ammonia as the sole utilizable nitrogen source.The significance of these findings to an assessment of the physiological factors circumscribing energy-spilling reactions in aerobic cultures ofK. aerogenes is discussed.  相似文献   

5.
2-Ketogluconic acid and, to a lesser extent, gluconic acid were found to be major products of glucose catabolism by phosphate-limited cultures of Klebsiella aerogenes NCTC 418, and together accounted for up to 46% of the glucose carbon that was metabolized.Although the concentrations of both acids increased sub-stantially at low growth rates, their specific rates of synthesis decreased markedly, as did the proportion of glucose converted into these products.Determination of the affinity constant, for glucose, of phosphate-limited organisms showed it to be not significantly different from that of glucose-limited organisms (K s 50 M), indicative of the phosphotransferase uptake system. And since these organisms possessed an active glucose 6-phosphate dehydrogenase, and had no detectable glucose dehydrogenase activity, it was concluded that gluconic acid and 2-ketogluconic acid arose from their corresponding phosphorylated metabolites, and not directly from glucose.  相似文献   

6.
Klebsiella aerogenes NCIB 418 assimilates glycerol via alternative pathways: one involves a glycerol kinase with a high affinity for glycerol (apparent K m=1–2×10–6 M), and the second a glycerol dehydrogenase with a much lower affinity for its substrate (apparent K m=2–4×10–2 M).In variously-limited chemostat cultures, one or the other pathway predominated. Thus, aerobic carbonlimited organisms contained only the glycerol kinase pathway whereas aerobic sulphate-limited or ammonia-limited organisms (grown on glycerol) used only the glycerol dehydrogenase pathway. Anaerobic cultures invariably contained glycerol dehydrogenase, and glycerol kinase was absent.Washed suspensions of aerobically-grown organisms oxidized glycerol with kinetics similar to that of the particular enzyme (the primary enzyme of the assimilatory pathway) which they possessed, thus indicating a close association between these two enzymes and the uptake process. But a supply of exogenous glycerol was not a prerequisite for the synthesis of either glycerol kinase or glycerol dehydrogenase, and nor was molecular oxygen the key factor in effecting modulation between the alternative pathways of glycerol metabolism, as had been previously suggested.The physiological significance of dual pathways of glycerol assimilation is discussed.  相似文献   

7.
Klebsiella aerogenes NCTC 418 was grown in chemostat culture under carbon limitation, with fructose, mannitol, gluconate or pyruvate as the growth-limiting substrates, respectively. It was found that under these conditions the carbon sources were fermented with maximal stoichiometry of ATP generation. The Y ATP values (g cells per mol ATP generated net) were similar for mannitol- and fructose-limited cultures, but gluconate-limited cultures expressed a value that was 20% lower. From these data it was concluded that gluconate-limited cells invest 0.5 ATP in the uptake of 1 gluconate.If the carbon limitation was instantaneously relieved by addition of a saturating amount of the growth-limiting substrate it was found that the response depended on the nature of the carbon substrate, and in particular on the ability to shift the fermentation pattern towards new products. In fructose- and gluconate-limited cultures the specific uptake rate of the carbon source increased substantially, without a concomitant increase in growth rate, and D-lactate appeared as a new fermentation product, in the case of gluconate accompanied by pyruvate. In contrast, with mannitol- and pyruvate-limited cultures the uptake rate of the carbon source and the fermentation pattern did not change. These results are discussed in connection with the functioning of the methylglyoxal by-pass and its role in sustaining metabolic reactivity.  相似文献   

8.
In order to assess the functional significance of the quinoprotein glucose dehydrogenase recently found to be present in K+-limited Klebsiella aerogenes, a broad study was made of the influence of specific environmental conditions on the cellular content of this enzyme. Whereas high activities were manifest in cells from glucose containing chemostat cultures that were either potassium- or phosphate-limited, only low activities were apparent in cells from similar cultures that were either glucose-, sulphate- or ammonia-limited. With these latter two cultures, a marked increase in glucose dehydrogenase activity was observed when 2,4-dinitrophenol (1 mM end concentration) was added to the growth medium. These results suggested that the synthesis of glucose dehydrogenase is not regulated by the level of glucose in the growth medium, but possibly by conditions that imposed an energetic stress upon the cells. This conclusion was further supported by a subsequent finding that K+-limited cells that were growing on glycerol also synthesized substantial amounts of glucose dehydrogenase.The enzyme was found to be membrane associated, and preliminary evidence has been obtained that it is located on the periplasmic side of the cytoplasmic membrane and functionally linked to the respiratory chain. This structural and functional orientation is consistent with glucose dehydrogenase serving as a low impedance energy generating system.Abbreviations D dilution rate - DNP 2,4-dinitrophenol - PQQ 2,7,9-tricarboxy-1H-pyrrolo(2,3-f)quinoline-4,5-dione - PTS phosphoenolpyruvate: glucose phosphotransferase - WB Wurster's Blue  相似文献   

9.
10.
Molar growth yield studies on chemostat cultures of Thiobacillus neapolitanus grown in thiosulfate-minerals medium have confirmed earlier observations that the dry weight increased linearly with the dilution rate. The observed increase can be explained neither by a change in cell composition nor by the observed excretion of organic compounds. The increase of the molar growth yield over the full range of growth rates, that is also observed in other obligate chemolithotrophs, was not found in the facultatively chemolithotrophic Thiobacillus A2, grown on thiosulfate or formate. The interpretation of the results in terms of maintenance energy requirement is discussed. It is concluded that these results do not allow a mathematical treatment according to the empirical formula of Pirt.Abbreviation APS Adenosine-5-phosphosulfate  相似文献   

11.
Thiobacillus neapolitanus grown in minerals medium in a thiosulfate-limited chemostat excreted 15% of all the carbon dioxide fixed as 14C-organic compounds at a dilution rate (D) of 0.03 h-1. At D=0.36 h-1 this excretion was 8.5%. Up to a D of 0.2h-1 glycolate was the major excretion product. Glycolate excretion was maximal at a pO2 of 100% air saturation (a.s.) and not detectable at a pO2 of 5% (a.s.). Increasing the pCO2 of the gassing mixture to 5% (v/v), at a pO2 of 50% a.s. resulted in a lowering of the glycolate excretion from 3.5% of the total CO2 fixed to 1.8%. These results indicate that glycolate excretion in T. neapolitanus is due to oxygenase activity of D-ribulose-1,5-bisphosphate carboxylase. HPMS (2-pyridylhydroxymethanesulfonate), an inhibitor of glycolate metabolism, did not stimulate the glycolate production in T. neapolitanus. Glycolate excretion was not observed in thiosulfate-limited chemostat cultures of the obligately chemolithotrophic Thiomicrospira pelophila or in thiosulfate- or formate-grown cultures of the facultatively chemolithotrophic Thiobacillus A2.Abbreviation HPMS 2-pyridylhydroxymethanesulfonate  相似文献   

12.
Klebsiella pneumoniae NCTC 418 was cultured aerobically in chemostat cultures (D=0.3 h-1; 35°C) under respectively carbon-, phosphate-, potassium-, sulphate-, and ammonia-limited conditions with glucose as the sole carbon and energy source. The effect of the external pH value on glucose metabolism and on the enzymes of the direct glucose oxidative pathway was examined. The pH value of the medium had a profound influence on both the activity and the synthesis of the glucose dehydrogenase and the gluconate dehydrogenase. At pH values ranging from pH 5.5 to pH 6.0 maximal activity and synthesis of these enzymes resulted in a more than 80% conversion of the glucose consumed into gluconate and 2-ketogluconate under potassium-or phosphate-limited conditions. On the other hand, no gluconate and/or 2-ketogluconate production could be detected when K. pneumoniae was cultured at pH 8.0. Whereas the synthesis of gluconate dehydrogenase seemingly was completely repressed, still some glucose dehydrogenase was present. The lack of glucose dehydrogenase activity at pH 8.0 was shown not to be due to the dissociation of the cofactor PQQ from the enzyme.Abbreviations DCIP dichlorophenol indophenol - PQQ pyrroloquinoline quinone [2,7,9-tricarboxy-1H-pyrrolo (2,3-f) quinoline-4,5-dione] - WB Wurster's Blue [1,4-bis-(dimethylamino)-benzene perchlorate]  相似文献   

13.
Magnesium-limited chemostat cultures of Klebsiella pneumoniae NCTC 418 with 20 M CaCl2 in the medium showed a low rate of gluconate plus 2-ketogluconate production relative to potassium- or phosphate-limited cultures. However, when the medium concentration of CaCl2 was increased to 1 mM, the glucose dehydrogenase (GDH) activities also increased and became similar to those observed in potassium- or phosphate limited cultures. It is concluded that this is due to Mg2+ and Ca2+ ions being involved in the binding of pyrroloquinoline quinone (PQQ) to the GDH apoenzyme. There seems to be an absolute requirement of divalent cations for proper enzyme functioning and in this respect Ca2+ ions could replace Mg2+ ions. The high GDH activity which has been found in cells grown under Mg2–-limited conditions in the presence of higher concentrations of Ca2+ ions, is compatible with the earlier proposal that GDH functions as an auxiliary energy generating system involved in the maintenance of high transmembrane ion gradients.Abbreviations PQQ pyrroloquinoline quinone - GDH glucose dehydrogenase (EC 1.1.99.17) - GaDH gluconate dehydrogenase (EC 1.1.99.3) - CAP chloramphenicol - WB Wurster's Blue [1,4-bis-(dimethylamino)-benzene perchlorate]  相似文献   

14.
No holoenzyme pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and only very low apoenzyme levels could be detected in cells of Klebsiella pneumoniae, growing anaerobically, or carrying out a fumarate or nitrate respiration. Low glucose dehydrogenase activity in some aerobic glucose-excess cultures of K. pneumoniae (ammonia or sulphate limitation) was increased significantly by addition of PQQ, whereas in cells already possessing a high glucose dehydrogenase activity (phosphate or potassium limitation) extra PQQ had almost no effect. These observations indicate that the glucose dehydrogenase activity in K. pneumoniae is modulated by both PQQ synthesis and synthesis of the glucose dehydrogenase apo-enzyme.Abbreviations PQQ 2, 7, 9-tricarboxy-1H-pyrrolo-(2,3-f)quinoline-4,5-dione - WB Wurster's Blue (1,4-bis-(dimethylamino)-benzene perchlorate)  相似文献   

15.
When cell-saturating amounts of glucose and phosphate were added to steady state cultures of Klebsiella aerogenes that were, respectively, glucose- and phosphate-limited, the organisms responded immediately with an increased oxygen consumption rate. This suggested that in neither case was glucose transport the rate-limiting process, and also that organisms must possess effective mechanisms for spilling the excess energy initially generated when a growth-limitation is temporarily relieved. Steady state cultures of mannitol- or glucose-limited organisms also seemingly generated energy at a greater rate than was required for cell synthesis since gluconate-limited cultures consumed oxygen at a lower rate, at each corresponding growth rate, than did mannitol- or glucose-limited cultures, and therefore expressed a higher YO value. Thus, mannitol- and glucose-limitations must be essentially carbon (and not energy) limitations. The excess energy generated by glucose metabolism is one component of "maintenance" and could be used at lower growth rates to maintain an increased solute gradient across the cell membrane, imposed by the addition of 2%, w/v, NaCl to the growth environment. The maintenance rates of oxygen consumption of K. aerogenes also could be caused to increase by adding glucose discontinuously (drop-wise) to a glucose-limited chemostat culture, or by exchanging nitrate for ammonia as the sole utilizable nitrogen source. The significance of these findings to an assessment of the physiological factors circumscribing energy-spilling reactions in aerobic cultures of K. aerogenes is discussed.  相似文献   

16.
Klebsiella aerogenes NCTC 418, growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture, exhibits two different cadmium detoxifying mechanisms. In addition to sulfide formation, increased accumulation of Pi is demonstrated as a novel mechanism. Intracellular cadmium is always quantitatively counterbalanced by a concerted increase in both inorganic sulfide and Pi contents of the cells. This led to the conclusion that production of sulfide and accumulation of Pi are detoxification mechanisms present in K. aerogenes but that their relative importance is crucially dependent on the strain and the growth conditions employed.  相似文献   

17.
Klebsiella pneumoniae NCTC 418 is able to convert 2-ketogluconate intracellularly to 6-phosphogluconate by the combined action of an NADPH-dependent 2-ketogluconate reductase and gluconate kinase. Synthesis of the former enzyme was maximal under 2-ketogluconate-limited growth conditions. An instantaneous transition to a 2-ketogluconate-excess condition resulted in an acceleration of catabolism of this carbon source, accompanied by complete inhibition of biosynthesis. It is suggested that the cause of this inhibition resides in depletion of the NADPH pool due to the high rate at which NADPH is oxidized by 2-ketogluconate reductase.  相似文献   

18.
Klebsiella aerogenes harbouring the plasmid pBR322 was grown in continuous culture at various growth rates under glucose, phosphate or ammonia limitation. With tetracycline in the medium, the maximum culture -lactamase activity was found at the higher growth rates. When tetracycline was absent, loss of resistance to the drug occurred. Concomitant with the occurrence of drug-sensitive cells, the culture -lactamase activity decreased. At the higher growth rates the enzyme activity decreased at a slightly higher rate than did the resistance to tetracycline. From this it was concluded that the -lactamase activity per mg cellular dry weight of the drug-resistant fraction of the population was still decreasing during the appearance of drug-sensitive cells. At the higher growth rates, this decrease was independent of the nutrient that was growth-limiting.  相似文献   

19.
Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and Pi accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of "facilitated precipitation". The process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. Since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.  相似文献   

20.
Klebsiella aerogenes NCTC 418 growing in the presence of cadmium under glucose-, sulfate-, or phosphate-limited conditions in continuous culture exhibited sulfide formation and Pi accumulation as the only demonstrable detoxification mechanisms. In the presence of mercury under similar conditions only HgS formation could be confirmed, by an increased sensitivity to mercury under sulfate-limited conditions, among others. The fact that the cells were most sensitive to cadmium under conditions of phosphate limitation and most sensitive to mercury under conditions of sulfate limitation led to the hypothesis that these inorganic detoxification mechanisms generally depended on a kind of "facilitated precipitation". The process was coined thus because heavy metals were probably accumulated and precipitated near the cell perimeter due to the relatively high local concentrations of sulfide and phosphate there. Depending on the growth-limiting nutrient, mercury proved to be 25-fold (phosphate limitation), 75-fold (glycerol limitation), or 150-fold (sulfate limitation) more toxic than cadmium to this organism. In the presence of lead, PbS formation was suggested. Since no other detoxification mechanisms were detected, for example, rendering heavy metal ions innocuous as metallo-organic compounds, it was concluded that formation of heavy metal precipitates is crucially important to this organism. In addition, it was observed that several components of a defined mineral medium were able to reduce mercuric ions to elemental mercury. This abiotic mercury volatilization was studied in detail, and its general and environmental implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号