首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A protein which promotes DNA strand transfer between linear double-stranded M13mp19 DNA and single-stranded viral M13mp19 DNA has been isolated from recA- E.coli. The protein is DNA polymerase I. Strand transfer activity residues in the small fragment encoding the 5'-3' exonuclease and can be detected using a recombinant protein comprising the first 324 amino acids encoded by polA. Either the recombinant 5'-3' exonuclease or intact DNA polymerase I can catalyze joint molecule formation, in reactions requiring only Mg2+ and homologous DNA substrates. Both kinds of reactions are unaffected by added ATP. Electron microscopy shows that the joint molecules formed in these reactions bear displaced single strands and therefore this reaction is not simply promoted by annealing of exonuclease-gapped molecules. The pairing reaction is also polar and displaces the 5'-end of the non-complementary strand, extending the heteroduplex joint in a 5'-3' direction relative to the displaced strand. Thus strand transfer occurs with the same polarity as nick translation. These results show that E.coli, like many eukaryotes, possesses a protein which can promote ATP-independent strand-transfer reactions and raises questions concerning the possible biological role of this function.  相似文献   

2.
DNA polymerase I has been purified to greater than 90% homogeneity from a strain of Escherichia coli K12 that bears the temperature-sensitive DNA polymerase I mutatation, polA12. The mutant enzyme has a reduced electrophoretic mobility and sedimentation rate. It is abnormally thermolabile and is rapidly inactivated at low salt concentrations. Its polymerase and 5' leads to 3' exonuclease activities are not grossly defective at 30 degrees, yet its capacity to promote the concerted 5' leads to 3' polymerization and the 5' leads to 3' exonucleolytic hydrolysis of nucleotides at a nick ("nick translation") is decreased 10-fold. These effects are probably the result of a significant alteration in the tertiary structure of the enzyme.  相似文献   

3.
The DNA polymerase encoded by herpes simplex virus 1 consists of a single polypeptide of Mr 136,000 that has both DNA polymerase and 3'----5' exonuclease activities; it lacks a 5'----3' exonuclease. The herpes polymerase is exceptionally slow in extending a synthetic DNA primer annealed to circular single-stranded DNA (turnover number approximately 0.25 nucleotide). Nevertheless, it is highly processive because of its extremely tight binding to a primer terminus (Kd less than 1 nM). The single-stranded DNA-binding protein from Escherichia coli greatly stimulates the rate (turnover number approximately 4.5 nucleotides) by facilitating the efficient binding to and extension of the DNA primers. Synchronous replication by the polymerase of primed single-stranded DNA circles coated with the single-stranded DNA-binding protein proceeds to the last nucleotide of available 5.4-kilobase template without dissociation, despite the 20-30 min required to replicate the circle. Upon completion of synthesis, the polymerase is slow in cycling to other primed single-stranded DNA circles. ATP (or dATP) is not required to initiate or sustain highly processive synthesis. The 3'----5' exonuclease associated with the herpes DNA polymerase binds a 3' terminus tightly (Km less than 50 nM) and is as sensitive as the polymerase activity to inhibition by phosphonoacetic acid (Ki approximately 4 microM), suggesting close communication between the polymerase and exonuclease sites.  相似文献   

4.
The 3' to 5' exonuclease of calf thymus DNA polymerase delta has properties expected of a proofreading nuclease. It digests either single-stranded DNA or the single-stranded nucleotides of a mismatched primer on a DNA template by a nonprocessive mechanism. The distribution of oligonucleotide products suggests that a significant portion of the enzyme dissociates after the removal of one nucleotide. This mechanism is expected if the substrate in vivo is an incorrect nucleotide added by the polymerase. Digestion of single-stranded DNA does not proceed to completion, producing final products six to seven nucleotides long. Digestion of a long mismatched terminus accelerates when the mismatched region is reduced to less than six nucleotides. At the point of complementation, the digestion rate is greatly reduced. These results suggest that short mismatched regions are a preferred substrate. The use of a mismatched primer-template analogue, lacking the template single strand, greatly lowers digestion efficiency at the single-stranded 3'-terminus, suggesting that the template strand is important for substrate recognition. When oligonucleotides were examined for effectiveness as exonuclease inhibitors, (dG)8 was found to be the most potent inhibitor of single-stranded DNA digestion. (dG)8 was less effective at inhibiting digestion of mismatched primer termini, again suggesting that this DNA is a preferred substrate. Overall, these results indicate that the exonuclease of DNA polymerase delta efficiently removes short mismatched DNA, a structure formed from misincorporation during DNA synthesis.  相似文献   

5.
DNA polymerase III holoenzyme (holoenzyme) processively and rapidly replicates a primed single-stranded DNA circle to produce a duplex with an interruption in the synthetic strand. The precise nature of this discontinuity in the replicative form (RF II) and the influence of the 5' termini of the DNA and RNA primers were analyzed in this study. Virtually all (90%) of the RF II products primed by DNA were nicked structures sealable by Escherichia coli DNA ligase; in 10% of the products, replication proceeded one nucleotide beyond the 5' DNA terminus displacing (but not removing) the 5' terminal nucleotide. With RNA primers, replication generally went beyond the available single-stranded template. The 5' RNA terminus was displaced by 1-5 nucleotides in 85% of the products; a minority of products was nicked (9%) or had short gaps (6%). Termination of synthesis on a linear DNA template was usually (85%) one base shy of completion. Thus, replication by holoenzyme utilizes all, or nearly all, of the available template and shows no significant 5'----3' exonuclease action as observed in primer removal by the "nick-translation" activity of DNA polymerase I.  相似文献   

6.
The early steps of excision repair of cyclobutane pyrimidine dimers are investigated. It is demonstrated that the apurinic/apyrimidinic endonuclease associated with the Micrococcus luteus uv-specific endonuclease cleaves the phosphodiester bond on the 3' side of the deoxyribose leaving a 3' hydroxy terminus and a 5' phosphoryl terminus. This nick is not a substrate for T4 polynucleotide ligase. The 3' base-free deoxyribose terminus is not a substrate for either the polymerase or the 3' to 5' exonuclease activities of Escherichia coli DNA polymerase I. However, the 3' terminus of the nick is converted to a substrate for DNA polymerization by the action of a 5' apurinic/apyrimidinic endonuclease. A three-step model for the incision step of excision repair of cyclobutane pyrimidine dimers is presented.  相似文献   

7.
M de Vega  J M Lazaro  M Salas    L Blanco 《The EMBO journal》1996,15(5):1182-1192
By site-directed mutagenesis in phi29 DNA polymerase, we have analyzed the functional importance of two evolutionarily conserved residues belonging to the 3'-5' exonuclease domain of DNA-dependent DNA polymerases. In Escherichia coli DNA polymerase I, these residues are Thr358 and Asn420, shown by crystallographic analysis to be directly acting as single-stranded DNA (ssDNA) ligands at the 3'-5' exonuclease active site. On the basis of these structural data, single substitution of the corresponding residues of phi29 DNA polymerase, Thr15 and Asn62, produced enzymes with a very reduced or altered capacity to bind ssDNA. Analysis of the residual 3'-5' exonuclease activity of these mutant derivatives on ssDNA substrates allowed us to conclude that these two residues do not play a direct role in the catalysis of the reaction. On the other hand, analysis of the 3'-5' exonuclease activity on either matched or mismatched primer/template structures showed a critical role of these two highly conserved residues in exonucleolysis under polymerization conditions, i.e. in the proofreading of DNA polymerization errors, an evolutionary advantage of most DNA-dependent DNA polymerases. Moreover, in contrast to the dual role in 3'-5' exonucleolysis and strand displacement previously observed for phi29 DNA polymerase residues acting as metal ligands, the contribution of residues Thr15 and Asn62 appears to be restricted to the proofreading function, by stabilization of the frayed primer-terminus at the 3'-5' exonuclease active site.  相似文献   

8.
Human DNA apurinic/apyrimidinic endonuclease 1 (APE1) is involved in the DNA base excision repair process. In addition to its AP (apurinic/apyrimidinic) endonucleolytic function, APE1 possesses 3' phosphodiesterase and 3'-5' exonuclease activities. The 3'-5' exonuclease activity is considered important in proofreading of DNA synthesis catalyzed by DNA polymerase beta. Here, we examine the removal of matched and mismatched dNMP from the 3' terminus of the 3'-recessed and nicked DNA by the APE1 activity using two different reaction buffers. To investigate whether the ability of APE1 to excise nucleotides from the 3' terminus depends on the thermal stability of the DNA duplex, we studied this characteristic of the DNAs that were used in the exonuclease assays in these two buffers. Our data confirm that APE1 removes mismatched nucleotides from the 3' terminus of DNA more efficiently than matched pairs. Both the efficiency of the 3'-5' exonuclease activity of APE1 and the thermal stability of DNA duplexes varied depending on the nature of the flanking group at the 5' margin of the nick. The 3'-5' exonuclease activity of APE1 shows a preference for substrates with a hydroxyl group at the 5' margin of the nick as well as for flapped and recessed DNAs.  相似文献   

9.
Mammalian telomeres end in single-stranded, G-rich 3' overhangs resulting from both the "end-replication problem" (the inability of DNA polymerase to replicate the very end of the telomeres) and postreplication processing. Telomeric G-rich overhangs are precisely defined in ciliates; the length and the terminal nucleotides are fixed. Human telomeres have very long overhangs that are heterogeneous in size (35-600 nt), indicating that their processing must differ in some respects from model organisms. We developed telomere-end ligation protocols that allowed us to identify the terminal nucleotides of both the C-rich and the G-rich telomere strands. Up to approximately 80% of the C-rich strands terminate in CCAATC-5', suggesting that after replication a nuclease with high specificity or constrained action acts on the C strand. In contrast, the G-terminal nucleotide was less precise than Tetrahymena and Euplotes but still had a bias that changed as a function of telomerase expression.  相似文献   

10.
Pectinase and cellulase, which are used to macerate plant material, always show traces of DNase activities that result in DNA nicking. Moreover, the DNA polymerase I usually applied in the in situ nick translation techniques shows both 5' to 3' and 3' to 5' exonuclease activities. As a result, significant nonspecific labeling appears in control preparations that are not digested by a restriction endonuclease. Our procedure includes blocking nonspecific nick labeling before incubation with restriction enzymes (HpaII and HaeIII). This is achieved by incorporation of ddGTP into DNA by the Taq polymerase which lacks 3' to 5' exonuclease activity. This method gives satisfactory results because it eliminates nonspecific nick translation signals that are present after applying the methods described for animal material.  相似文献   

11.
C A Keim  D W Mosbaugh 《Biochemistry》1991,30(46):11109-11118
Spinach chloroplast DNA polymerase was shown to copurify with a 3' to 5' exonuclease activity during DEAE-cellulose, hydroxylapatite, and heparin-agarose column chromatography. In addition, both activities comigrated during nondenaturing polyacrylamide gel electrophoresis and cosedimented through a glycerol gradient with an apparent molecular weight of 105,000. However, two forms of exonuclease activity were detected following velocity sedimentation analysis. Form I constituted approximately 35% of the exonuclease activity and was associated with the DNA polymerase, whereas the remaining activity (form II) was free of DNA polymerase and exhibited a molecular weight of approximately 26,500. Resedimentation of form I exonuclease generated both DNA polymerase associated and DNA polymerase unassociated forms of the exonuclease, suggesting that polymerase/exonuclease dissociation occurred. The exonuclease activity (form I) was somewhat resistant to inhibition by N-ethylmaleimide, whereas the DNA polymerase activity was extremely sensitive. Using in situ detection following SDS-polyacrylamide activity gel electrophoresis, both form I and II exonucleases were shown to reside in a similar, if not identical, polypeptide of approximately 20,000 molecular weight. Both form I and II exonucleases were equally inhibited by NaCl and required 7.5 mM MgCl2 for optimal activity. The 3' to 5' exonuclease excised deoxyribonucleoside 5'-monophosphates from both 3'-terminally matched and 3'-terminally mismatched primer termini. In general, the exonuclease preferred to hydrolyze mismatched 3'-terminal nucleotides as determined from the Vmax/Km ratios for all 16 possible combinations of matched and mismatched terminal base pairs. These results suggest that the 3' to 5' exonuclease may be involved in proofreading errors made by chloroplast DNA polymerase.  相似文献   

12.
The substrate requirement of the intrinsic 3'-5' exonuclease of DNA polymerase B1 from the hyperthermophilic archaeon Sulfolobus solfataricus P2 (Sso polB1) was investigated. Sso polB1 degraded both single-stranded (ss) and double-stranded (ds) DNA at similar rates in vitro at temperatures of physiological relevance. No difference was found in the cleavage of 3'-recessive, 3'-protruding and blunt-ended DNA duplexes at these temperatures. However, a single-stranded nick in duplex DNA was less readily employed by the enzyme to initiate cleavage than a free 3' end. At lower temperatures, Sso polB1 cleaved ssDNA more efficiently than dsDNA. The strong 3'-5' exonuclease activity of polB1 was inhibited by 50% in the presence of 2 microM dNTPs, but remained measurable at up to 600 microM dNTPs. In view of the strong exonuclease activity of Sso polB1 on matched dsDNA, we suggest that S. solfataricus may have evolved mechanisms to regulate the exonuclease/polymerase ratio of the enzyme, thereby reducing the cost of proofreading at high temperature.  相似文献   

13.
In this report we present the alignment of one of the most conserved segments (Exo III) of the 3'-5' exonuclease domain in 39 DNA polymerase sequences, including prokaryotic and eukaryotic enzymes. Site-directed substitutions of the two most conserved residues, which form the Exo III motif Tyr-(X)3-Asp of phi 29 DNA polymerase, did not affect single-stranded DNA binding, DNA polymerization, processivity or protein-primed initiation. In contrast, substitution of the highly conserved Tyr residue by Phe or Cys decreased the 3'-5' exonuclease activity to 7.5 and 4.1%, respectively, of the wild-type activity. Change of the highly conserved Asp residue into Ala resulted in almost complete inactivation (0.1%) of the 3'-5' exonuclease. In accordance with the contribution of the 3'-5' exonuclease to the fidelity of DNA replication, the three mutations in the Exo III motif (Y165F, Y165C and D169A) produced enzymes with an increased frequency of misinsertion and extension of DNA polymerization errors. Surprisingly, the three mutations in the Exo III motif strongly decreased (80- to 220-fold) the ability to replicate phi 29 DNA, this behaviour being due to a defect in the strand displacement activity, an intrinsic property of phi 29 DNA polymerase required for this process. Taking these results into account, we propose that the strand displacement activity of phi 29 DNA polymerase resides in the N-terminal domain, probably overlapping with the 3'-5' exonuclease active site.  相似文献   

14.
B G Que  K M Downey  A G So 《Biochemistry》1978,17(9):1603-1606
The 3' to 5' exonuclease activity of Escherichia coli DNA polymerase I can be selectively inhibited by nucleoside 5'-monophosphates, wherease the DNA polymerase activity is not inhibited. The results of kinetic studies show that nucleotides containing a free 3'-hydroxy group and a 5'-phosphoryl group are competitive inhibitors of the 3' to 5' exonuclease. Previous studies by Huberman and Kornberg [Huberman, J., and Kornberg, A. (1970), J. Biol. Chem. 245, 5326] have demonstrated a binding site for nucleoside 5'-monophosphates on DNA polymerase I. The Kdissoc values for nucleoside 5'-monophosphates determined in that study are comparable to the Ki values determined in the present study, suggesting that the specific binding site for nucleoside 5'-monophosphates represents the inhibitor site of the 3' to 5' exonuclease activity. We propose that (1) the binding site for nucleoside 5'-monophosphates on DNA polymerase I may represent the product site of the 3' to 5' exonuclease activity. (2) the primer terminus site for the 3' to 5' exonuclease activity is distinct from the primer terminus site for the polymerase activity, and (3) nucleoside 5'-monophosphates bind at the primer terminus site for the 3' to 5' exonuclease activity.  相似文献   

15.
DNA exonucleases are critical for DNA replication, repair, and recombination. In the bacterium Escherichia coli there are 14 DNA exonucleases including exonucleases I-IX (including the two DNA polymerase I exonucleases), RecJ exonuclease, SbcCD exonuclease, RNase T, and the exonuclease domains of DNA polymerase II and III. Here we report the discovery and characterization of a new E. coli exonuclease, exonuclease X. Exonuclease X is a member of a superfamily of proteins that have homology to the 3'-5' exonuclease proofreading subunit (DnaQ) of E. coli DNA polymerase III. We have engineered and purified a (His)(6)-exonuclease X fusion protein and characterized its activity. Exonuclease X is a potent distributive exonuclease, capable of degrading both single-stranded and duplex DNA with 3'-5' polarity. Its high affinity for single-strand DNA and its rapid catalytic rate are similar to the processive exonucleases RecJ and exonuclease I. Deletion of the exoX gene exacerbated the UV sensitivity of a strain lacking RecJ, exonuclease I, and exonuclease VII. When overexpressed, exonuclease X is capable of substituting for exonuclease I in UV repair. As we have proposed for the other single-strand DNA exonucleases, exonuclease X may facilitate recombinational repair by pre-synaptic and/or post-synaptic DNA degradation.  相似文献   

16.
The vaccinia virus-induced DNA polymerase has been purified about 500-fold from a cytoplasmic extract of vaccinia-infected HeLa cells. Analysis of the purified fraction by sodium dodecyl sulfate-polyacrylamide gel electrophoresis reveals a single polypeptide of 110,000 daltons, which is greater than 95% pure. This polypeptide co-sediments with polymerase activity through a glycerol gradient. The sedimentation coefficient of the enzyme is 6.3 S, and its Stokes radius is 4.6 nm. The molecular weight of the native enzyme derived from these values is 115,000. Vaccinia polymerase is therefore a single large polypeptide of 110,000 to 115,000 daltons. The purified fraction has no significant endonuclease activity, but a strong exonuclease activity co-purifies with polymerase activity through every step in the isolation. The polymerase and exonuclease activities are inactivated at 45 degrees C at the same rate. It is likely, therefore, that both activities are catalyzed by the same polypeptide. The exonuclease hydrolyzes DNA predominantly in the 3' leads to 5' direction, to produce 5' mononucleotides. The exonuclease degrades single-stranded DNA more rapidly than duplex DNA, and the rate of digestion of both single-stranded and double-stranded DNA increases as the size of the substrate decreases. Single-stranded circular DNA is a potent inhibitor of the exonuclease activity, but duplex circular DNA has no significant effect on its activity.  相似文献   

17.
Yeast cells from a wild type or protease-deficient strain were lysed in the absence or presence of protease inhibitors and the extracts analyzed by analytical high pressure liquid chromatography on diethylaminoethyl silica gel. Conditions that inhibited protease action caused elution of a novel DNA polymerase activity at a position in the gradient distinct from the elution positions of both DNA polymerase I and II. In large scale purifications, this DNA polymerase, called DNA polymerase III, copurified with a single-stranded DNA dependent 3'-5' exonuclease activity, exonuclease III, to near homogeneity. Glycerol gradient centrifugation partially dissociated the complex to yield two peaks of exonuclease III activity, one at 7.7 S together with the DNA polymerase, and one at 4.0 S without polymerase activity. Gel filtration indicated that the complex has a molecular mass greater than 400 kDa. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate indicated that the complex consists of several subunits: 140, 62, 55, and 53 kilodaltons, some of which may be proteolysis products. The exonuclease component of the complex can excise single nucleotide mismatches providing a base-paired primer-template which can be elongated by the DNA polymerase. Under replication conditions, the complex exhibits a measurable turnover rate of dTTP to dTMP and it contains no primase activity. The enzymatic activities of the 3'-5' exonuclease are consistent with a proofreading function during in vivo DNA replication. A second exonuclease activity, exonuclease IV, separated from the complex late in the purification scheme. It degrades both single-stranded and double-stranded DNA in the 5'----3' direction.  相似文献   

18.
S Yoshida  M Tada    M Tada 《Nucleic acids research》1976,3(11):3227-3233
It has been shown that 4-hydroxyaminoquinoline 1-oxide, the proximate form of the carcinogen 4-nitroquinoline 1-oxide, binds covalently to the purine bases of DNA. Here we report that carcinogen-bound nucleotides can be excised from DNA by a 5' leads to 3' exonuclease associated with DNA polymerase I of E. coli in the forms of either mononucleotides or oligonucleotides. Beef spleen phosphodiesterase II (5' leads to 3') also split carcinogen-bound nucleotides, while a 3' leads to 5' exonuclease of DNA polymerase I and E. coli exonuclease III (3' leads to 5') could not excise the modified nucleotide.  相似文献   

19.
The fidelity of DNA replication by Escherichia coli DNA polymerase I (pol I) was assessed in vivo using a reporter plasmid bearing a ColE1-type origin and an ochre codon in the beta-lactamase gene. We screened 53 single mutants within the region Val(700)-Arg(712) in the polymerase active-site motif A. Only replacement of Ile(709) yielded mutator polymerases, with substitution of Met, Asn, Phe, or Ala increasing the beta-lactamase reversion frequency 5-23-fold. Steady-state kinetic analysis of the I709F polymerase revealed reductions in apparent K(m) values for both insertion of non-complementary nucleotides and extension of mispaired primer termini. Abolishment of the 3'-5' exonuclease activity of wild-type pol I increased mutation frequency 4-fold, whereas the combination of I709F and lack of the 3'-5' exonuclease yielded a 400-fold increase. We conclude that accurate discrimination of the incoming nucleotide at the polymerase domain is more critical than exonucleolytic proofreading for the fidelity of pol I in vivo. Surprisingly, the I709F polymerase enhanced mutagenesis in chromosomal DNA, although the increase was 10-fold less than in plasmid DNA. Our findings indicate the feasibility of obtaining desired mutations by replicating a target gene at a specific locus in a plasmid under continuous selection pressure.  相似文献   

20.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号