首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The putative intermediate dienol (2) in the steroid isomerase (KSI) catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3) has been independently generated and tested as a substrate for KSI. At pH 7, dienol 2 is converted by KSI to a mixture of 1 (46%) and 3 (54%). The apparent second-order rate constant for reaction of 2 with KSI to produce 3 (kappa cat/Km = 2.3 x 10(8) M-1 s-1) is similar to that for reaction of 1 with KSI (kappa cat/Km = 2.1 x 10(8) M-1 s-1), demonstrating that 2 is kinetically competent. Isomerization of 1 by KSI in D2O gives only 5% of solvent deuterium incorporated into the product 3. When 2 reacts with KSI in D2O, and the product 3 is isolated (from direct reaction of 2 and from subsequent conversion of the 1 initially formed), ca. 80 atom % deuterium is located at C-6 beta, confirming that protonation of the dienol by KSI occurs at the same face as the proton transfer in the KSI catalyzed reaction of 1 to 3.  相似文献   

2.
3-Oxo-Delta(5)-steroid isomerase (KSI) catalyzes the isomerization of a variety of 3-oxo-Delta(5)-steroids to their conjugated Delta(4) isomers. The mechanism involves sequential enolization and ketonization, with Asp-38 acting to transfer a proton from C-4 to C-6 through a dienol(ate) intermediate. We have previously proposed that this intermediate is anionic, with stabilization provided from direct hydrogen bonding from Tyr-14 and Asp-99 to the oxygen of the steroid. In this work, we analyze the binding of substituted 2-naphthols, which are analogues of the intermediate dienol, to the D38E KSI mutant and the corresponding double mutants lacking one of the two electrophilic groups (D38E/Y14F and D38E/D99A). The binding of these naphthols to the mutant KSIs at pH 7 is described by the modified Bronsted equation: log K(D) = alpha(pK(a)) + constant, where K(D) is the dissociation constant of the complex. The high value of alpha for D38E (alpha = 0.87 +/- 0.06) indicates that the negative charge in these D38E-naphthol complexes is localized almost exclusively on the bound ligand. In contrast, values of alpha for the double mutants (alpha = 0.28 +/- 0.02 for D38E/Y14F and alpha = 0.25 +/- 0.02 for D38E/D99A) are consistent with very little negative charge on the oxygen of the bound naphthol. Ultraviolet spectra of 5-nitro-2-naphthol and the fluorescence spectra of equilenin bound to these mutants support this interpretation. Extrapolation of these results to the intermediate in the catalytic reaction suggests that for the reaction with D38E, the intermediate is a negatively charged dienolate with hydrogen bonding from both Tyr-14 and Asp-99. Removal of either one of these H-bond donors (Tyr-14 or Asp-99) causes destabilization of the anion and results in a dienol enzyme-intermediate complex rather than a dienolate.  相似文献   

3.
The role of Tyr-14 of 3-oxo-delta 5-steroid isomerase (KSI) was probed by analysis of the spectra of 3-amino-1,3,5(10)-estratrien-17 beta-ol (4) and equilenin (5) bound to the active site of KSI. The ultraviolet spectrum of 4 bound to KSI is identical to that for 4 in neutral solution. This observation indicates that Tyr-14 does not protonate the amine group of 4 at the active site. By analogy, it is argued that the 3-oxo group of steroid substrates for KSI is not protonated during the reaction. In contrast, the fluorescence excitation spectra of 5 bound to KSI show characteristics of an ionized phenol, even at pH values as low as 3.8. It is concluded that the pKa of equilenin is perturbed from its value in solution of 9 to less than or equal to 3.5 at the active site of KSI. Similarly, the pKa of the intermediate dienol in the KSI reaction should be lowered to less than or equal to 4.5 when it is bound to KSI. Thus, the function of Tyr-14 as an electrophilic catalyst is likely the stabilization of the anion of the dienol by hydrogen bonding rather than by proton transfer.  相似文献   

4.
Oh KS  Cha SS  Kim DH  Cho HS  Ha NC  Choi G  Lee JY  Tarakeshwar P  Son HS  Choi KY  Oh BH  Kim KS 《Biochemistry》2000,39(45):13891-13896
Ketosteroid isomerase (KSI) is one of the most proficient enzymes catalyzing an allylic isomerization reaction at a diffusion-controlled rate. In this study of KSI, we have detailed the structures of its active site, the role of various catalytic residues, and have explained the origin of the its fast reactivity by carrying out a detailed investigation of the enzymatic reaction mechanism. This investigation included the X-ray determination of 15 crystal structures of two homologous enzymes in free and complexed states (with inhibitors) and extensive ab initio calculations of the interactions between the active sites and the reaction intermediates. The catalytic residues, through short strong hydrogen bonds, play the role of charge buffer to stabilize the negative charge built up on the intermediates in the course of the reaction. The hydrogen bond distances in the intermediate analogues are found to be about 0.2 A shorter in the product analogues both experimentally and theoretically.  相似文献   

5.
Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ5-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ5-3-ketosteroid to its conjugated Δ4-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1–11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7–2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.  相似文献   

6.
Secondary bile acids, formed by intestinal bacteria, are suggested to play a significant role in cancers of the gastrointestinal tract in humans. Bile acid 7alpha/beta-dehydroxylation is carried out by a few species of intestinal clostridia which harbor a multi-gene bile acid inducible (bai) operon. Several genes encoding enzymes in this pathway have been cloned and characterized. However, no gene product(s) has yet been assigned to the production of 3-oxo-Delta4-cholenoic acid intermediates of cholic acid (CA), chenodeoxycholic acid (CDCA) or ursodeoxycholic acid (UDCA). We previously reported that the baiH gene encodes an NADH:flavin oxidoreductase (NADH:FOR); however, the role of this protein in bile acid 7-dehydroxylation is unclear. Homology searches and secondary structural alignments suggest this protein to be similar to flavoproteins which reduce alpha/beta-unsaturated carbonyl compounds. The baiH gene product was expressed in Escherichia coli, purified and discovered to be a stereo-specific NAD(H)-dependent 7beta-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase. Additionally, high sequence similarity between the baiH and baiCD gene products suggests the baiCD gene may encode a 3-oxo-Delta4-cholenoic acid oxidoreductase specific for CDCA and CA. We tested this hypothesis using cell extracts prepared from E. coli overexpressing the baiCD gene and discovered that it encodes a stereo-specific NAD(H)-dependent 7alpha-hydroxy-3-oxo-Delta4-cholenoic acid oxidoreductase.  相似文献   

7.
Studies of the proton-transfer reaction by Pseudomonas testosteroni 3-oxo steroid Delta(4)-Delta(5)-isomerase with Delta(5(6))- and Delta(5(10))-steroid substrates demonstrate the importance of the position of the double bond for the efficiency of the isomerization process. Thus 3-oxo-Delta(5(6))-substrates have markedly high k(cat.) values, whereas those of 3-oxo-Delta(5(10))-substrates are very low and their apparent K(m) values approach equilibrium dissociation constants. The first step in the isomerization process is: [Formula: see text] which is governed by the k(-1)/k(+1) ratio and is shown to be very similar for the two classes of substrates (3-oxo-Delta(5(6))- and -Delta(5(10))-steroids). They therefore differ in the steps distal to the initial formation of the Michaelis-Menten complex. The use of the deuterated androst-5(6)-ene-3,17-dione substrate enabled us to calculate individual rate constants k(+1) and k(-1) as well as to determine the apparent rate-limiting step in the isomerization process. With the deuterated oestr-5(10)-ene-3,17-dione substrate, no significant isotope effect was observed suggesting that a different rate-limiting step may be operative in this isomerization process. Data are presented that indicate that under optimal concentrations of the efficient androst-5(6)-ene-3,17-dione substrate, the forward reaction for ES complex formation (as defined by k(+1)) is limited only by diffusion and the apparent K(m) does not approach the equilibrium constant, suggesting that the evolution of this enzyme has proceeded close to ;catalytic perfection'.  相似文献   

8.
D C Hawkinson  T C Eames  R M Pollack 《Biochemistry》1991,30(45):10849-10858
Knowledge of the partitioning of the putative dienol intermediate (2) by steroid isomerase (KSI) (Hawkinson et al. 1991), in conjunction with various steady-state kinetic parameters, allows elucidation of the detailed free energy profile for the KSI-catalyzed conversion of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3). This free energy profile shows four kinetically significant energy barriers (substrate binding, the two chemical steps, and dissociation of product) that must be traversed upon conversion of 1 to 3. Thus, no single step of the catalytic cycle is cleanly rate-limiting. The source of the catalytic power of KSI is discussed via comparison of the free energy profile for the KSI-catalyzed isomerization with those for the acetate-catalyzed isomerization and the aqueous reaction at pH 7. Similarities between the energetics of the KSI-catalyzed and triosephosphate isomerase catalyzed reactions are also noted.  相似文献   

9.
Protein engineering based on structure homology holds the potential to engineer steroid-transforming enzymes on demand. Based on the genome sequencing analysis of industrial Mycobacterium strain HGMS2 to produce 4-androstene-3,17-dione (4-AD), three hypothetical proteins were predicted as putative Δ5–3-ketosteroid isomerases (KSIs) to catalyze an intramolecular proton transfer involving the transformation of 5-androstene-3,17-dione (5-AD) into 4-AD, which were defined as mKSI228, mKSI291 and mKSI753. Activity assays indicated that mKSI228 and mKSI291 exhibited weak activity, as low as 0.7% and 1.5%, respectively, of a well-studied and highly active KSI from Pseudomonas putida KSI (pKSI), while mKSI753 had no activity similar to Mycobacterium tuberculosis KSI (mtKSI). Although the 3D structures of the putative mKSIs were homologous to pKSI, their amino acid sequences were significantly different from those of pKSI and tKSI. Thus, by use of these two KSIs as homology models, we were able to convert the low-active mKSI291 into a high-active active KSI by site-directed mutagenesis. On the other hand, an X-ray crystallographic structure of mKSI291 identified a water molecule in its active site. This unique water molecule might function as a bridge to connect Ser-OH, Tyr57-OH and C3O of the intermediate form a hydrogen-bonding network that was responsible for its weak activity, compared with that of mtKSI. Our results not only demonstrated the use of a protein engineering approach to understanding KSI catalytic mechanism, but also provided an example for engineering the catalytic active sites and gaining a functional enzyme based on homologous structures.  相似文献   

10.
Yonkunas MJ  Xu Y  Tang P 《Biophysical journal》2005,89(4):2350-2356
The nature and the sites of interactions between anesthetic halothane and homodimeric Delta5-3-ketosteroid isomerase (KSI) are characterized by flexible ligand docking and confirmed by 1H-15N NMR. The dynamics consequence of halothane interaction and the implication of the dynamic changes to KSI function are studied by multiple 5-ns molecular dynamics simulations in the presence and absence of halothane. Both docking and MD simulations show that halothane prefer the amphiphilic dimeric interface to the hydrophobic active site of KSI. Halothane occupancy at the dimer interface disrupted the intersubunit hydrogen bonding formed either directly through side chains of polar residues or indirectly through the mediation of the interfacial water molecules. Moreover, in the presence of halothane, the exchange rate of the bound waters with bulk water was increased. Halothane perturbation to the dimer interface affected the overall flexibility of the active site. This action is likely to contribute to the halothane-induced reduction of the KSI activity. The allosteric halothane modulation of the dynamics-function relationship of KSI without direct competition at the enzymatic active sites may be generalized to offer a unifying explanation of anesthetic action on a diverse range of multidomain neuronal proteins that are potentially relevant to clinical general anesthesia.  相似文献   

11.
Yun S  Jang DS  Kim DH  Choi KY  Lee HC 《Biochemistry》2001,40(13):3967-3973
The backbone dynamics of Delta(5)-3-ketosteroid isomerase (KSI) from Pseudomonas testosteroni has been studied in free enzyme and its complex with a steroid ligand, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N relaxation measurements. The relaxation data were analyzed using the model-free formalism to extract the model-free parameters (S(2), tau(e), and R(ex)) and the overall rotational correlation time (tau(m)). The rotational correlation times were 19.23 +/- 0.08 and 17.08 +/- 0.07 ns with the diffusion anisotropies (D( parallel)/D( perpendicular)) of 1.26 +/- 0.03 and 1.25 +/- 0.03 for the free and steroid-bound KSI, respectively. The binding of 19-NTHS to free KSI causes a slight increase in the order parameters (S(2)) for a number of residues, which are located mainly in helix A1 and strand B4. However, the majority of the residues exhibit reduced order parameters upon ligand binding. In particular, strands B3, B5, and B6, which have most of the residues involved in the dimer interaction, have the reduced order parameters in the steroid-bound KSI, indicating the increased high-frequency (pico- to nanosecond) motions in the intersubunit region of this homodimeric enzyme. Our results differ from those of previous studies on the backbone dynamics of monomeric proteins, in which high-frequency internal motions are typically restricted upon ligand binding.  相似文献   

12.
Hénot F  Pollack RM 《Biochemistry》2000,39(12):3351-3359
3-oxo-Delta(5)-steroid isomerase (KSI) from Comamonas (Pseudomonas) testosteroni catalyzes the isomerization of beta,gamma-unsaturated 3-oxosteroids to their conjugated isomers through an intermediate dienolate. Residue Asp-38 (pK(a) 4.57) acts as a base to abstract a proton from C-4 of the substrate to form an intermediate dienolate, which is then reprotonated on C-6. Both Tyr-14 (pK(a) 11.6) and Asp-99 (pK(a) >/= 9.5) function as hydrogen-bond donors to O-3 of the steroid, helping to stabilize the transition states. Mutation of the active-site base Asp-38 to the weakly basic Asn (D38N) has previously been shown to result in a >10(8)-fold decrease of catalytic activity. In this work, we describe the preparation and kinetic analysis of the Ala-38 (D38A) mutant. Unexpectedly, D38A has a catalytic turnover number (k(cat)) that is ca. 10(6)-fold greater than the value for D38N and only about 140-fold less than that for wild type. Kinetic studies as a function of pH show that D38A-catalyzed isomerization involves two groups, with pK(a) values of 4.2 and 10.4, respectively, in the free enzyme, which are assigned to Asp-99 and either Tyr-14 or Tyr-55. A mechanism for D38A is proposed in which Asp-99 is recruited as the catalytic base, with stabilization of the intermediate dienolate ion and the flanking transition states provided by hydrogen bonding from both Tyr-14 and Tyr-55. This mechanism is supported by the lack of detectable activity of the D38A/D99N, D38A/Y14F, and D38A/Y55F double mutants.  相似文献   

13.
Dilution and column-based protein refolding techniques are compared for refolding Delta 5-3-ketosteroid isomerase (KSI) with a C-terminus his6-tag. Column refolding was performed by removing the denaturant while the protein was adsorbed in an immobilized metal affinity chromatography column. Both dilution refolding and a single-step column-based refolding strategy were optimized to maximize the recovery of KSI enzyme activity, and achieved refolding yields of 87% and 70% respectively. It was found that the column-based refolding yield was reduced at higher adsorbed protein concentrations. An elution gradient with increasing imidazole concentration was used to selectively elute the biologically active KSI protein following column refolding, with high molecular weight KSI aggregates retained in the column. An iterative column-refolding process was then developed to denature and refold protein retained in the column, which significantly increased the refolding yield at high-adsorbed protein concentrations. Repetition of the column refolding operation increased the refolding yield from 50% to 75% for protein adsorbed at a concentration of 2.9 mg/mL of adsorbent. Although for the KSI protein column-based refolding did not improve the overall refolding yield compared to dilution refolding, it may still be advantageous due to the ease of integration with purification operations, increased control over the refolding conditions, and the ability to segregate refolded protein from inactive aggregates during elution.  相似文献   

14.
Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.  相似文献   

15.
The structural gene coding for the delta 5-3-ketosteroid isomerase (KSI) of Pseudomonas putida biotype B has been cloned, and its entire nucleotide sequence has been determined by a dideoxynucleotide chain termination method. A 2.1-kb DNA fragment containing the ksi gene was cloned from a P. putida biotype B genomic library in lambda gt11. The open reading frame of ksi encodes 393 nucleotides, and the amino acid sequence deduced from the nucleotide sequence agrees with the directly determined amino acid sequence (K. Linden and W. F. Benisek, J. Biol. Chem. 261:6454-6460, 1986). A putative purine-rich ribosome binding site was found 8 bp upstream of the ATG start codon. Escherichia coli BL21(DE3) transformed with the pKK-KSI plasmid containing the ksi gene expressed a high level of isomerase activity when induced by isopropyl-beta-D-thiogalactopyranoside. KSI was purified to homogeneity by a simple and rapid procedure utilizing fractional precipitation and an affinity column of deoxycholate-ethylenediamine-agarose as a major chromatographic step. The molecular weight of KSI was 14,535 (calculated, 14,536) as determined by electrospray mass spectrometry. The purified KSI showed a specific activity (39,807 mumol min-1 mg-1) and a Km (60 microM) which are close to those of KSI originally obtained from P. putida biotype B.  相似文献   

16.
Kim DH  Jang DS  Nam GH  Choi KY 《Biochemistry》2001,40(16):5011-5017
Ketosteroid isomerase (KSI) from Comamonas testosteroni is a homodimeric enzyme with 125 amino acids in each monomer catalyzing the allylic isomerization reaction at rates comparable to the diffusion limit. Kinetic analysis of KSI refolding has been carried out to understand its folding mechanism. The refolding process as monitored by fluorescence change revealed that the process consists of three steps with a unimolecular fast, a bimolecular intermediate, and most likely unimolecular slow phases. The fast refolding step might involve the formation of structured monomers with hydrophobic surfaces that seem to have a high binding capacity for the amphipathic dye 8-anilino-1-naphthalenesulfonate. During the refolding process, KSI also generated a state that can bind equilenin, a reaction intermediate analogue, at a very early stage. These observations suggest that the KSI folding might be driven by the formation of the apolar active-site cavity while exposing hydrophobic surfaces. Since the monomeric folding intermediate may contain more than 83% of the native secondary structures as revealed previously, it is nativelike taking on most of the properties of the native protein. Urea-dependence analysis of refolding revealed the existence of folding intermediates for both the intermediate and slow steps. These steps were accelerated by cyclophilin A, a prolyl isomerase, suggesting the involvement of a cis-trans isomerization as a rate-limiting step. Taken together, we suggest that KSI folds into a monomeric intermediate, which has nativelike secondary structure, an apolar active site, and exposed hydrophobic surface, followed by dimerization and prolyl isomerizations to complete the folding.  相似文献   

17.
The backbone dynamics of Y14F mutant of Delta(5)-3-ketosteroid isomerase (KSI) from Comamonas testosteroni has been studied in free enzyme and its complex with a steroid analogue, 19-nortestosterone hemisuccinate (19-NTHS), by (15)N NMR relaxation measurements. Model-free analysis of the relaxation data showed that the single-point mutation induced a substantial decrease in the order parameters (S(2)) in free Y14F KSI, indicating that the backbone structures of Y14F KSI became significantly mobile by mutation, while the chemical shift analysis indicated that the structural perturbations of Y14F KSI were more profound than those of wild-type (WT) KSI upon 19-NTHS binding. In the 19-NTHS complexed Y14F KSI, however, the key active site residues including Tyr14, Asp38 and Asp99 or the regions around them remained flexible with significantly reduced S(2) values, whereas the S(2) values for many of the residues in Y14F KSI became even greater than those of WT KSI upon 19-NTHS binding. The results thus suggest that the hydrogen bond network in the active site might be disrupted by the Y14F mutation, resulting in a loss of the direct interactions between the catalytic residues and 19-NTHS.  相似文献   

18.
Classical molecular dynamics simulations were utilized to investigate the structural and dynamical properties of water in the active site of ketosteroid isomerase (KSI) to provide insight into the role of these water molecules in the enzyme-catalyzed reaction. This reaction is thought to proceed via a dienolate intermediate that is stabilized by hydrogen bonding with residues Tyr16 and Asp103. A comparative study was performed for the wild-type (WT) KSI and the Y16F, Y16S, and Y16F/Y32F/Y57F (FFF) mutants. These systems were studied with three different bound ligands: equilenin, which is an intermediate analog, and the intermediate states of two steroid substrates. Several distinct water occupation sites were identified in the active site of KSI for the WT and mutant systems. Three additional sites were identified in the Y16S mutant that were not occupied in WT KSI or the other mutants studied. The number of water molecules directly hydrogen bonded to the ligand oxygen was approximately two in the Y16S mutant and one in the Y16F and FFF mutants, with intermittent hydrogen bonding of one water molecule in WT KSI. The molecular dynamics trajectories of the Y16F and FFF mutants reproduced the small conformational changes of residue 16 observed in the crystal structures of these two mutants. Quantum mechanical/molecular mechanical calculations of (1)H NMR chemical shifts of the protons in the active site hydrogen-bonding network suggest that the presence of water in the active site does not prevent the formation of short hydrogen bonds with far-downfield chemical shifts. The molecular dynamics simulations indicate that the active site water molecules exchange much more frequently for WT KSI and the FFF mutant than for the Y16F and Y16S mutants. This difference is most likely due to the hydrogen-bonding interaction between Tyr57 and an active site water molecule that is persistent in the Y16F and Y16S mutants but absent in the FFF mutant and significantly less probable in WT KSI.  相似文献   

19.
Multidimensional NMR was employed to investigate the structural changes in the urea-induced equilibrium unfolding of the dimeric ketosteroid isomerase (KSI) from Pseudomonas putida biotype B. Sequence specific backbone assignments for the native KSI and the protein with 3.5 M urea were carried out using various 3D NMR experiments. Hydrogen exchange measurements indicated that the secondary structures of KSI were not affected significantly by urea up to 3.5 M. However, the chemical shift analysis of (1)H-(15)N HSQC spectra at various urea concentrations revealed that the residues in the dimeric interface region, particularly around the beta5-strand, were significantly perturbed by urea at low concentrations, while the line-width analysis indicated the possibility of conformational exchange at the interface region around the beta6-strand. The results thus suggest that the interface region primarily around the beta5- and beta6-strands could play an important role as the starting positions in the unfolding process of KSI.  相似文献   

20.
Feierberg I  Aqvist J 《Biochemistry》2002,41(52):15728-15735
Ketosteroid isomerase (KSI) catalyzes the isomerization of Delta(5)-3-ketosteroids and Delta(4)-3-ketosteroids at very high rates. Here we examine the principles underlying the catalytic efficiency of KSI by computer simulations using the empirical valence bond method in combination with molecular dynamics free energy perturbation simulations. The simulations reproduce available kinetic and structural data very well and allow us to examine several features of the catalytic mechanism in detail. It is found that about 60% of the rate enhancement is due to stabilization of the negatively charged dienolate intermediate by hydrogen bonding. The critical H-bond between Tyr16 and the intermediate is found to be a normal ionic H-bond with the preferred proton location on the tyrosine residue. The remaining 40% of the catalytic effect originates from a reduction of the reorganization energy of the reaction. The possibility of an active site water molecule occupying the empty cavity adjacent to the catalytic base (Asp40) is also addressed. The existence of such a water molecule could explain how the enzyme manages to maintain a low pK(a) for the general base residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号