首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 185 毫秒
1.
1. The variability in the stable isotope signatures of carbon and nitrogen (δ13C and δ15N) in different phytoplankton taxa was studied in one mesotrophic and three eutrophic lakes in south‐west Finland. The lakes were sampled on nine to 16 occasions over 2–4 years and most of the time were dominated by cyanobacteria and diatoms. A total of 151 taxon‐specific subsamples covering 18 different phytoplankton taxa could be isolated by filtration through a series of sieves and by flotation/sedimentation, followed by microscopical identification and screening for purity. 2. Substantial and systematic differences between phytoplankton taxa, seasons and lakes were observed for both δ13C and δ15N. The values of δ13C ranged from ?34.4‰ to ?5.9‰ and were lowest in chrysophytes (?34.4‰ to ?31.3‰) and diatoms (?30.6‰ to ?26.6‰). Cyanobacteria were most variable (?32.4‰ to ?5.9‰), including particularly high values in the nostocalean cyanobacterium Gloeotrichia echinulata (?14.4‰ to ?5.9‰). For δ13C, the taxon‐specific amplitude of temporal changes within a lake was usually <1–8‰ (<1–4‰ for microalgae alone and <1–8‰ for cyanobacteria alone), whereas the amplitude among taxa within a water sample was up to 31‰. 3. The values of δ15N ranged from ?2.1‰ to 12.8‰ and were high in chrysophytes, dinophytes and diatoms, but low in the nitrogen‐fixing cyanobacteria Anabaena spp., Aphanizomenon spp. and G. echinulata (?2.1‰ to 1.6‰). Chroococcalean cyanobacteria ranged from ?1.4‰ to 8.9‰. For δ15N, the taxon‐specific amplitude of temporal changes within a lake was 2–6‰, (2–6‰ for microalgae alone and 2–4‰ for cyanobacteria alone) and the amplitude among taxa within a water sample was up to 11‰. 4. The isotopic signatures of phytoplankton changed systematically with their physical and chemical environment, most notably with the concentrations of nutrients, but correlations were non‐systematic and site‐specific. 5. The substantial variability in the isotopic signatures of phytoplankton among taxa, seasons and lakes complicates the interpretation of isotopic signatures in lacustrine food webs. However, taxon‐specific values and seasonal patterns showed some consistency among years and may eventually be predictable.  相似文献   

2.
1. Numerous studies have quantified the relative contribution of terrestrial‐ and phytoplankton‐derived carbon sources to zooplankton secondary production in lakes. However, few investigated the pathways along which allochthonous and autochthonous carbon (C) was actually conveyed to consumers. 2. We suggest that the combined use of fatty acid and stable isotope biomarkers could solve this issue. We conducted a field study on two oligotrophic lakes, in which primary production increased significantly between 2002 and 2004. We used modelling to estimate the contribution of terrestrial‐ and phytoplankton‐derived C to particulate organic C (POC) and zooplankton production from their δ13C values in 2002 and 2004. 3. According to the isotope model, phytoplankton‐derived C accounted for a major part of the POC pool in both lakes and supported more Daphnia sp. production in 2004 than in 2002. Fatty acid data revealed that increased contribution of algal‐C to Daphnia production, although common between both lakes, was achieved through C pathways that were different. In one lake, Daphnia grazed more intensively on phytoplankton, whereas in the other there was greater grazing on bacteria. In the latter case, the increased primary production resulted in greater release of algal‐derived dissolved organic C (DOC), which may have supported extra bacterial and eventually Daphnia, production. 4. This is the first study illustrating that the combination of fatty acid and stable isotope biomarkers could further our understanding of the factors controlling the relative magnitude of food webs pathways conveying organic matter to zooplankton.  相似文献   

3.
流溪河水库颗粒有机物及浮游动物碳、氮稳定同位素特征   总被引:2,自引:0,他引:2  
宁加佳  刘辉  古滨河  刘正文 《生态学报》2012,32(5):1502-1509
为了解影响流溪河水库颗粒有机物(POM)碳和氮稳定同位素(δ13C和δ15N)变化的主要因素,及其与浮游动物δ13C和δ15N之间的关系,于2008年5月至12月份对POM及浮游动物的δ13C和δ15N进行了研究。颗粒有机物碳稳定同位素(δ13CPOM)和氮稳定同位素(δ15NPOM)的季节性变化幅度分别为5.1‰和2.2‰,5月和7月份δ13CPOM较高,而在10月和12月份降低,这主要与降雨将大量外源有机物带入水库而引起的外源及内源有机物在POM组成上发生变化有关。δ15NPOM总体呈上升趋势,可能是由降雨引起的外源负荷、初级生产力、生物固氮等因素共同作用的结果。浮游动物的δ13C及δ15N总的变化趋势与POM的相似,也具有明显的季节性变化,食物来源的季节变化可能是造成其变化的主要原因。在5月份,浮游动物的食物来源为POM中δ13C较高的部分,也就是外源有机物,而在10月及12月份,其食物则可能主要为浮游植物。  相似文献   

4.
5.
1. The stable carbon isotope ratio δ13C is a useful tracer of energy flow in lake food webs, and the zooplankton signature is commonly used to establish a baseline for the pelagic habitat. However, sources of temporal variability in the δ13C of different zooplankton taxa are rarely considered. 2. Here, we investigate to what extent temporal variation in the δ13C of particulate organic matter (POM) (<41 μm) and the C : N of zooplankton can explain the temporal variability in δ13C of freshwater zooplankton. We compare temporal patterns of δ13C and C : N for Daphnia, Hesperodiaptomus franciscanus and Leptodiaptomus tyrelli over a 6‐month period at four sites in two oligotrophic lakes. 3. In all three taxa, seasonal variation in zooplankton C : N explained more of the variation in zooplankton δ13C than did the δ13C of POM. This suggests that variation in the lipid content of zooplankton can strongly influence temporal variation of δ13C in zooplankton. 4. Using these data, we evaluate procedures that estimate the δ13C of only the non‐lipid component of zooplankton. If zooplankton lipids are primarily dietary in origin, than extracting lipids or ‘normalising’δ13C based on C : N will exclude a major dietary source, and therefore may be inappropriate. 5. We conclude that temporal variation in body composition (C : N) of zooplankton can significantly influence the temporal variation of zooplankton δ13C signatures.  相似文献   

6.
The vaquita (Phocoena sinus) is the world's most endangered cetacean and has experienced a 60% reduction in the size of its population in the past decade. Knowledge of its basic ecology is essential for developing successful management plans to protect and conserve this species. In this study, we identified vaquita foraging areas by creating an isoscape of the Upper Gulf of California (UGC) based on sediment and zooplankton carbon (δ13C) and nitrogen (δ15N) isotope values. Our results confirm that this species is confined to the western region of the UGC, which is characterized by relatively high δ15N values (sediments: 10.2‰ ± 2.0‰, zooplankton: 15.8‰ ± 1.3‰), higher sea surface temperatures (~16°C–25°C), higher concentrations of silt in sediments, and the highest turbidity. In contrast, the eastern region of the UGC had relatively low sediment (7.7‰ ± 2.4‰) and zooplankton (14.6‰ ± 1.0‰) δ15N values, and the highest concentrations of sand in sediments. Our approach is an effective use of marine isoscapes over a small spatial scale (<200 km) to identify the environmental characteristics that define the critical habitat for an extremely endangered marine mammal.  相似文献   

7.
In this paper, we present an integrated account of the diurnal variation in the stable isotopes of water (δD and δ18O) and dry matter (δ15N, δ13C, and δ18O) in the long‐distance transport fluids (xylem sap and phloem sap), leaves, pod walls, and seeds of Lupinus angustifolius under field conditions in Western Australia. The δD and δ18O of leaf water showed a pronounced diurnal variation, ranging from early morning minima near 0‰ for both δD and δ18O to early afternoon maxima of 62 and 23‰, respectively. Xylem sap water showed no diurnal variation in isotopic composition and had mean values of ?13·2 and ?2·3‰ for δD and δ18O. Phloem sap water collected from pod tips was intermediate in isotopic composition between xylem sap and leaf water and exhibited only a moderate diurnal fluctuation. Isotopic compositions of pod wall and seed water were intermediate between those of phloem and xylem sap water. A model of average leaf water enrichment in the steady state (Craig & Gordon, pp. 9–130 in Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Palaeotemperatures, Lischi and Figli, Pisa, Italy, 1965; Dongmann et al., Radiation and Environmental Biophysics 11, 41–52, 1974; Farquhar & Lloyd, pp. 47–70 in Stable Isotopes and Plant Carbon–Water Relations, Academic Press, San Diego, CA, USA, 1993) agreed closely with observed leaf water enrichment in the morning and early afternoon, but poorly during the night. A modified model taking into account non‐steady‐state effects (Farquhar and Cernusak, unpublished) gave better predictions of observed leaf water enrichments over a full diurnal cycle. The δ15N, δ13C, and δ18O of dry matter varied appreciably among components. Dry matter δ15N was highest in xylem sap and lowest in leaves, whereas dry matter δ13C was lowest in leaves and highest in phloem sap and seeds, and dry matter δ18O was lowest in leaves and highest in pod walls. Phloem sap, leaf, and fruit dry matter δ18O varied diurnally, as did phloem sap dry matter δ13C. These results demonstrate the importance of considering the non‐steady‐state when modelling biological fractionation of stable isotopes in the natural environment.  相似文献   

8.
J. Grey  R. I. Jones  D. Sleep 《Oecologia》2000,123(2):232-240
Carbon stable isotope analysis was carried out on zooplankton from 24 United Kingdom lakes to examine the hypothesis that zooplankton dependence on allochthonous sources of organic carbon declines with increasing lake trophy. Stable isotope analysis was also carried out on particulate and dissolved organic matter (POM and DOM) and, in 11 of the lakes, of phytoplankton isolates. In 21 of the 24 lakes, the zooplankton were depleted in 13C relative to bulk POM, consistent with previous reports. δ13C for POM showed relatively little variation between lakes compared to high variation in values for DOM and phytoplankton. δ13C values for phytoplankton and POM converged with increasing lake trophy, consistent with the expected greater contribution of autochthonous production to the total organic matter pool in eutrophic lakes. The difference between δ13C for zooplankton and that for POM was also greatest in oligotrophic lakes and reduced in mesotrophic lakes, in accordance with the hypothesis that increasing lake trophic state leads to greater dependence of zooplankton on phytoplankton production. However, the difference increased again in hypertrophic lakes, where higher δ13C values for POM may have been due to greater inputs of 13C-enriched organic matter from the littoral zone. The very wide variation in phytoplankton δ13C between lakes of all trophic categories made it difficult to detect robust patterns in the variation in δ13C for zooplankton. Received: 2 November 1998 / Accepted: 3 December 1999  相似文献   

9.
10.
We present carbon stable isotope, δ13C, results from air and organic matter samples collected during 98 individual field campaigns across a network of Carboeuroflux forest sites in 2001 (14 sites) and 2002 (16 sites). Using these data, we tested the hypothesis that δ13C values derived from large‐scale atmospheric measurements and models, which are routinely used to partition carbon fluxes between land and ocean, and potentially between respiration and photosynthesis on land, are consistent with directly measured ecosystem‐scale δ13C values. In this framework, we also tested the potential of δ13C in canopy air and plant organic matter to record regional‐scale ecophysiological patterns. Our network estimates for the mean δ13C of ecosystem respired CO2 and the related ‘discrimination’ of ecosystem respiration, δer and Δer, respectively, were ?25.6±1.9‰ and 17.8 ±2.0‰ in 2001 and ?26.6±1.5‰ and 19.0±1.6‰ in 2002. The results were in close agreement with δ13C values derived from regional‐scale atmospheric measurement programs for 2001, but less so in 2002, which had an unusual precipitation pattern. This suggests that regional‐scale atmospheric sampling programs generally capture ecosystem δ13C signals over Europe, but may be limited in capturing some of the interannual variations. In 2001, but less so in 2002, there were discernable longitudinal and seasonal trends in δer. From west to east, across the network, there was a general enrichment in 13C (~3‰ and ~1‰ for the 2 years, respectively) consistent with increasing Gorczynski continentality index for warmer and drier conditions. In 2001 only, seasonal 13C enrichment between July and September, followed by depletion in November (from about ?26.0‰ to ?24.5‰ to ?30.0‰), was also observed. In 2001, July and August δer values across the network were significantly related to average daytime vapor pressure deficit (VPD), relative humidity (RH), and, to a lesser degree, air temperature (Ta), but not significantly with monthly average precipitation (Pm). In contrast, in 2002 (a much wetter peak season), δer was significantly related with Ta, but not significantly with VPD and RH. The important role of plant physiological processes on δer in 2001 was emphasized by a relatively rapid turnover (between 1 and 6 days) of assimilated carbon inferred from time‐lag analyses of δer vs. meteorological parameters. However, this was not evident in 2002. These analyses also noted corresponding diurnal cycles of δer and meteorological parameters in 2001, indicating a rapid transmission of daytime meteorology, via physiological responses, to the δer signal during this season. Organic matter δ13C results showed progressive 13C enrichment from leaves, through stems and roots to soil organic matter, which may be explained by 13C fractionation during respiration. This enrichment was species dependent and was prominent in angiosperms but not in gymnosperms. δ13C values of organic matter of any of the plant components did not well represent short‐term δer values during the seasonal cycle, and could not be used to partition ecosystem respiration into autotrophic and heterotrophic components.  相似文献   

11.
We aimed to quantify the separate effects of photosynthetic and postphotosynthetic carbon isotope discrimination on δ13C of the fast‐turn‐over carbon pool (water soluble organic carbon and CO2 emitted from heterotrophic tissues), including their diel variation, along the pathway of carbon transport from the foliage to the base of the stem. For that purpose, we determined δ13C in total and water‐soluble organic matter of the foliage plus δ13C and δ18O in phloem organic matter of twigs and at three heights along the stem of Pinus sylvestris over a nine‐day period, including four measurements per day. These data were related to meteorological and photosynthesis parameters and to the δ13C of stem‐emitted CO2. In the canopy (foliage and twigs), the δ13C of soluble organic matter varied diurnally with amplitudes of up to 1.9‰. The greatest 13C enrichment was recorded during the night/early morning, indicating a strong influence of starch storage and remobilization on the carbon isotope signatures of sugars exported from the leaves. 13C enrichment of soluble organic matter from the leaves to the twig phloem and further on to the phloem of the stem was supposed to be a result of carbon isotope fractionation associated with metabolic processes in the source and sink tissues. CO2 emitted from the stem was enriched by 2.3–5.2‰ compared with phloem organic matter. When day‐to‐day variation was addressed, water‐soluble leaf δ13C and twig phloem δ18O were strongly influenced by ci/ca and stomatal conductance (Gs), respectively. These results show that both photosynthetic and postphotosynthetic carbon isotope fractionation influence δ13C of organic matter over time, and over the length of the basipetal transport pathway. Clearly, these influences on the δ13C of respired CO2 must be considered when using the latter for partitioning of ecosystem CO2 fluxes or when the assessment of δ13C in organic matter is applied to estimate environmental effects in ci/ca.  相似文献   

12.
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

13.
The stable isotopes of nitrogen (δ15N) and carbon (δ13C) provide powerful tools for quantifying trophic relationships and carbon flow to consumers in food webs; however, the isotopic signatures of organisms vary within a lake. Assessment of carbon and nitrogen isotopic signatures in a suite of plants, invertebrates, and fishes in Lake Kyoga, indicated significant variation between two sites for δ13C (paired t = 6.305; df = 14, P < 0.001 and δ15N paired t = 1.292; df = 14; P < 0.05). The fish fauna in Bukungu was generally more 13C enriched (mean δ13C = –16.37 ± 1.64‰) than in Iyingo (mean δ13C = –20.80 ± 2.41‰) but more δ15N depleted (mean δ15N = 5.57 ± 0.71‰) than in Iyingo (mean δ15N = 6.92 ± 0.83‰). The simultaneous shifts in phytoplankton and consumer signatures confirmed phytoplankton as the major source of carbon for the food chain leading to fish. Limited sampling coverage within lakes may affect lake wide stable isotope signatures, and the same error is transferred into trophic position estimation. Consideration of potential intra‐lake spatial variability in isotope ratios and size is essential in evaluating the spatial and trophic structure of fish assemblages.  相似文献   

14.
《Acta Oecologica》2002,23(4):277-285
The δ13C and δ15N values of primary producers and consumers were studied to obtain information on the trophic role of Posidonia oceanica L. Delile, the dominant primary producer, in a Mediterranean shallow environment (the Stagnone di Marsala, western Sicily). δ13C strongly discriminated between pelagic and benthic pathways, with the former based on phytoplankton and the latter on a mixed pool of seagrass detritus, epiphytes and benthic algae as carbon sources. A particularly important trophic role appears to be performed by the vegetal epiphytic community on seagrass leaves (δ13C = –14.9 ± 0.1‰), which supports most of the faunal seagrass community (i.e. Amphipoda, Isopoda, Tanaidacea; δ13C = –14.9 ± 0.1‰, –12.5 ± 0.1‰ and –14.8 ± 1.0‰, respectively). Although Poceanica13C = –11.3 ± 0.3‰) does not seem to be utilised by consumers via grazing (apart from a few Palaemonidae species with δ13C value of –10.8 ± 1.8‰), its trophic role may be via detritus. Poceanica detritus may be exploited as a carbon source by small detritivore invertebrates, and above all seems to be exploited as a nitrogen reservoir by both bottom and water column consumers determining benthic–pelagic coupling. At least three trophic levels were detected in both the pelagic (mixture of phytoplankton and cyanobacteria, zooplankton, juvenile transient fish) and benthic (sedimentary organic matter and epiphytes, small seagrass-associated invertebrates, larger invertebrates and adult resident fish) pathways.  相似文献   

15.
Within-lake variability in carbon and nitrogen stable isotope signatures   总被引:3,自引:0,他引:3  
1. We assessed spatial and temporal variation in carbon and nitrogen isotopic signatures in different compartments of a single lake ecosystem. Stable isotope analyses were made on samples of particulate organic matter (POM), zooplankton, periphyton, macrophytes, macroinvertebrates and fish collected from several locations throughout the ice‐free period. 2. No spatial variation in δ13C or δ15N values was found for pelagic samples of POM and zooplankton. However, pelagic δ15N signatures increased steadily through the summer resulting in an almost 6‰ average increase in POM and zooplankton. A concurrent decrease in epilimnetic nitrate concentrations suggested that the increase in δ15N of POM and zooplankton could have resulted from a progressive 15N‐enrichment of the available inorganic nitrogen pool as the size of this pool was reduced. 3. Significant spatial variation in isotopic ratios was observed within littoral and profundal communities. Some spatial differences were likely related to lake‐specific characteristics, such as a major inlet and a small harbour area and some were interconnected with temporal events. 4. Marked differences between spring and autumn δ15N and δ13C values of fish at one site probably reflected a spring spawning immigration from a larger downstream lake and also indicated limited dispersal of these immigrants. 5. Our results indicate that restricted sampling of ecosystem components from lakes may provide misleading single values for the isotope end members needed for quantitative uses of stable isotopes in mixing models and for estimating trophic position. Hence we strongly advise that studies of individual lakes, or multiple lake comparisons, that utilise stable isotope analyses should pay more attention to potential within lake spatial and temporal variability of isotope ratios.  相似文献   

16.
1. We used long‐term data and a simulation model to investigate temporal fluctuations in zebra mussel populations, which govern the ecological and economic impacts of this pest species. 2. The size of the zebra mussel (Dreissena polymorpha) population in the Hudson River estuary fluctuated approximately 11‐fold across a 13‐year period, following a cycle with a 2–4 year period. 3. This cycling was caused by low recruitment during years of high adult population size, rapid somatic growth of settled animals, and adult survivorship of 50% per year. 4. Adult growth and body condition were weakly correlated with phytoplankton biomass. 5. The habitat distribution of the Hudson's population changed over the 13‐year period, with an increasing proportion of the population spreading onto soft sediments over time. The character of soft‐sediment habitats in the Hudson changed because of large amounts (mean = 34 g DM m?2) of empty zebra mussel shells now in the sediments. 6. Simulation models show that zebra mussel populations can show a range of long‐term trajectories, depending on the balance between adult space limitation, larval food limitation, and disturbance. 7. Effective understanding and management of the effects of zebra mussels and other alien species depend on understanding of their long‐term demography, which may vary across ecosystems.  相似文献   

17.
1. Shallow arctic lakes and ponds have simple and short food webs, but large uncertainties remain about benthic–pelagic links in these systems. We tested whether organic matter of benthic origin supports zooplankton biomass in a pond in NE Greenland, using stable isotope analysis of carbon and nitrogen in the pond itself and in a 13C‐enrichment enclosure experiment. In the latter, we manipulated the carbon isotope signature of benthic algae to enhance its isotopic discrimination from other potential food sources for zooplankton. 2. The cladoceran Daphnia middendorffiana responded to the 13C‐enrichment of benthic mats with progressively increasing δ13C values, suggesting benthic feeding. Stable isotope analysis also pointed towards a negligible contribution of terrestrial carbon to the diet of D. middendorffiana. This agreed with the apparent dominance of autochthonous dissolved organic matter in the pond revealed by analysis of coloured dissolved organic matter. 3. Daily net production by phytoplankton in the pond (18 mg C m?2 day?1) could satisfy only up to half of the calculated minimum energy requirements of D. middendorffiana (35 mg C m?2 day?1), whereas benthic primary production alone (145 mg C m?2 day?1) was more than sufficient. 4. Our findings highlight benthic primary production as a major dietary source for D. middendorffiana in this system and suggest that benthic organic matter may play a key role in sustaining pelagic secondary production in such nutrient‐limited high arctic ponds.  相似文献   

18.

Zebra mussels (Dreissena polymorpha) filter feed phytoplankton and reduce available pelagic energy, potentially driving fish to use littoral energy sources in lakes. However, changes in food webs and energy flow in complex fish communities after zebra mussel establishment are poorly known. We assessed impacts of zebra mussels on fish littoral carbon use, trophic position, isotopic niche size, and isotopic niche overlap among individual fish species using δ13C and δ15N data collected before (2014) and after (2019) zebra mussel establishment in Lake Ida, MN. Isotope data were collected from 11 fish species, and from zooplankton and littoral invertebrates to estimate baseline isotope values. Mixing models were used to convert fish δ13C and δ15N into estimates of littoral carbon and trophic position, respectively. We tested whether trophic position, littoral carbon use, isotopic niche size, and isotopic niche overlap changed from 2014 to 2019 for each fish species. We found few effects on fish trophic position, but 10 out of 11 fish species increased littoral carbon use after zebra mussel establishment, with mean littoral carbon increasing from 43% before to 67% after establishment. Average isotopic niche size of individual species increased significantly (2.1-fold) post zebra mussels, and pairwise-niche overlap between species increased significantly (1.2-fold). These results indicate zebra mussels increase littoral energy dependence in the fish community, resulting in larger individual isotopic niches and increased isotopic niche overlap. These effects may increase interspecific competition among fish species and could ultimately result in reduced abundance of species less able to utilize littoral energy sources.

  相似文献   

19.
The natural abundance of stable isotopes (δ13C and δ1315N) was determined for components of the pelagic food web in Loch Ness, a deep oligotrophic lake in northern Scotland, and compared with values from the inflow rivers and the catchment vegetation. Phytoplankton δ13C was low compared to values reported from other lakes, possibly reflecting a high use of 13C-depleted carbon dioxide from respired organic matter before further isotopic fractionation during photosynthesis. Phytoplankton δ13C was appreciably lower than that of dissolved and particulate organic matter (DOM and POM) in the loch. The DOM and POM were evidently overwhelmingly of allochthonous origin and ultimately derived from terrestrial plant detritus. The distinctive δ13C values for phytoplankton and detritus in the loch allowed the use of food sources by grazing crustacean zooplankton to be assessed, and the contributions of phytoplankton carbon and detrital carbon to zooplankton total body carbon appeared to be about equal. Comparison of δ13C and δ15N values for zooplankton and fish allowed assessment of trophic structure in the loch. The very high dependence of the pelagic food web in Loch Ness on allochthonous organic matter inputs from the catchment may be exceptional in a large lake, but has important implications for our understanding of lake ecosystem processes as well as for lake management.  相似文献   

20.
Temporal variations in the stable carbon isotope composition (δ13C) of leaves and current‐year stems were examined in beech trees over one year. The δ13C of both tissues were equal in the bud stage and started to diverge during growth, with values decreasing by 2·5 and 4·5‰ for stems and leaves, respectively. The dynamics of the δ13C and content of non‐structural sugars were also assessed. The beginning of the growth period was characterized by a decrease in starch content and high starch δ13C values. Later in the season, the δ13C of leaf soluble sugars progressively decreased from the end of May and the δ13C of stem sucrose was at least 1·5‰ higher than that of leaves. The δ13C of CO2 respired by stem tissue increased during stem growth and exhibited large seasonal variations ( from ?22·1 to ?26·3‰). These values generally fell between those of starch and total organic matter. The results of the study showed that the δ13C of stems is altered by two apparent fractionation steps: one during sugar transfer from leaves to stems and one during stem respiration. These results may have implications for analysis of isotopic signals in tree rings and forest ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号