首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Tests are introduced which are designed to test for a nondecreasing ordered alternative among the survival functions of k populations consisting of multiple observations on each subject. Some of the observations could be right censored. A simulation study is conducted comparing the proposed tests on the basis of estimated power when the underlying distributions are multivariate normal. Equal sample sizes of 20 with 25% censoring, and 40 with both 25% and 50% censoring are considered for 3 and 4 populations. All of the tests hold their α‐values well. A recommendation is made as to the best overall test for the situations considered.  相似文献   

3.
Han F  Pan W 《Biometrics》2012,68(1):307-315
Many statistical tests have been proposed for case-control data to detect disease association with multiple single nucleotide polymorphisms (SNPs) in linkage disequilibrium. The main reason for the existence of so many tests is that each test aims to detect one or two aspects of many possible distributional differences between cases and controls, largely due to the lack of a general and yet simple model for discrete genotype data. Here we propose a latent variable model to represent SNP data: the observed SNP data are assumed to be obtained by discretizing a latent multivariate Gaussian variate. Because the latent variate is multivariate Gaussian, its distribution is completely characterized by its mean vector and covariance matrix, in contrast to much more complex forms of a general distribution for discrete multivariate SNP data. We propose a composite likelihood approach for parameter estimation. A direct application of this latent variable model is to association testing with multiple SNPs in a candidate gene or region. In contrast to many existing tests that aim to detect only one or two aspects of many possible distributional differences of discrete SNP data, we can exclusively focus on testing the mean and covariance parameters of the latent Gaussian distributions for cases and controls. Our simulation results demonstrate potential power gains of the proposed approach over some existing methods.  相似文献   

4.
A robust statistical method to detect linkage or association between a genetic marker and a set of distinct phenotypic traits is to combine univariate trait-specific test statistics for a more powerful overall test. This procedure does not need complex modeling assumptions, can easily handle the problem with partially missing trait values, and is applicable to the case with a mixture of qualitative and quantitative traits. In this note, we propose a simple test procedure along this line, and show its advantages over the standard combination tests for linkage or association in the literature through a data set from Genetic Analysis Workshop 12 (GAW12) and an extensive simulation study.  相似文献   

5.
A multiple parametric test procedure is proposed, which considers tests of means of several variables. The single variables or subsets of variables are ordered according to a data‐dependent criterion and tested in this succession without alpha‐adjustment until the first non‐significant test. The test procedure needs the assumption of a multivariate normal distribution and utilizes the theory of spherical distributions. The basic version is particularly suited for variables with approximately equal variances. As a typical example, the procedure is applied to gene expression data from a commercial array.  相似文献   

6.
Joint analysis of multiple phenotypes has gained growing attention in genome-wide association studies (GWASs), especially for the analysis of multiple intermediate phenotypes which measure the same underlying complex human disorder. One of the multivariate methods, MultiPhen (O’ Reilly et al. 2012), employs the proportional odds model to regress a genotype on multiple phenotypes, hence ignoring the phenotypic distributions. Despite the flexibilities of MultiPhen, the properties and performance of MultiPhen are not well understood, especially when the phenotypic distributions are non-normal. In fact, it is well known in the statistical literature that the estimation is attenuated when the explanatory variables contain measurement errors. In this study, we first established an equivalence relationship between MultiPhen and the generalized Kendall tau association test, shedding light on why MultiPhen can perform well for joint association analysis of multiple phenotypes. Through the equivalence, we show that MultiPhen may lose power when the phenotypes are non-normal. To maintain the power, we propose two solutions (ATeMP-rn and ATeMP-or) to improve MultiPhen, and demonstrate their effectiveness through extensive simulation studies and a real case study from the Guangzhou Twin Eye Study.  相似文献   

7.
In spite of the success of genome-wide association studies (GWASs), only a small proportion of heritability for each complex trait has been explained by identified genetic variants, mainly SNPs. Likely reasons include genetic heterogeneity (i.e., multiple causal genetic variants) and small effect sizes of causal variants, for which pathway analysis has been proposed as a promising alternative to the standard single-SNP-based analysis. A pathway contains a set of functionally related genes, each of which includes multiple SNPs. Here we propose a pathway-based test that is adaptive at both the gene and SNP levels, thus maintaining high power across a wide range of situations with varying numbers of the genes and SNPs associated with a trait. The proposed method is applicable to both common variants and rare variants and can incorporate biological knowledge on SNPs and genes to boost statistical power. We use extensively simulated data and a WTCCC GWAS dataset to compare our proposal with several existing pathway-based and SNP-set-based tests, demonstrating its promising performance and its potential use in practice.  相似文献   

8.
Small study effects occur when smaller studies show different, often larger, treatment effects than large ones, which may threaten the validity of systematic reviews and meta-analyses. The most well-known reasons for small study effects include publication bias, outcome reporting bias, and clinical heterogeneity. Methods to account for small study effects in univariate meta-analysis have been extensively studied. However, detecting small study effects in a multivariate meta-analysis setting remains an untouched research area. One of the complications is that different types of selection processes can be involved in the reporting of multivariate outcomes. For example, some studies may be completely unpublished while others may selectively report multiple outcomes. In this paper, we propose a score test as an overall test of small study effects in multivariate meta-analysis. Two detailed case studies are given to demonstrate the advantage of the proposed test over various naive applications of univariate tests in practice. Through simulation studies, the proposed test is found to retain nominal Type I error rates with considerable power in moderate sample size settings. Finally, we also evaluate the concordance between the proposed tests with the naive application of univariate tests by evaluating 44 systematic reviews with multiple outcomes from the Cochrane Database.  相似文献   

9.
In this report, we compare the differences between various site- and haplotype-frequency tests in their power to detect positive selection by doing computer simulations. Our results are the following. 1) Although haplotype-frequency tests that are conditional on the number of haplotypes (K) were developed for nonrecombining haplotypes, these tests are insensitive to recombination. Such tests, including the Ewens-Watterson (EW) test, can therefore be applied to recombining haplotypes. 2) Tests conditional on the number of segregating sites (S) become overly conservative in the presence of recombination. 3) The EW test is usually the most powerful test during the sweep phase, especially when the local recombination rate is high. 4) The "extended haplotype homozygosity" test relies heavily on the prior knowledge of the target of selection. With that knowledge, it is the most powerful test, whereas in the absence of this prior information, the test has little power. We also study the sensitivities of the haplotype-frequency tests to background selection and various demographic forces. We find that these tests are sensitive to some forces other than positive selection. To alleviate the problem of low specificity, compound tests, such as the DH test (Zeng et al. 2006), may be a solution. In the companion paper (Zeng K, Shi S, Wu C-I, in preparation), we use the EW test to devise 2 compound tests, which are more powerful in detecting positive selection than DH, but are also relatively insensitive to demography.  相似文献   

10.
To date, the genome-wide association study (GWAS) is the primary tool to identify genetic variants that cause phenotypic variation. As GWAS analyses are generally univariate in nature, multivariate phenotypic information is usually reduced to a single composite score. This practice often results in loss of statistical power to detect causal variants. Multivariate genotype–phenotype methods do exist but attain maximal power only in special circumstances. Here, we present a new multivariate method that we refer to as TATES (Trait-based Association Test that uses Extended Simes procedure), inspired by the GATES procedure proposed by Li et al (2011). For each component of a multivariate trait, TATES combines p-values obtained in standard univariate GWAS to acquire one trait-based p-value, while correcting for correlations between components. Extensive simulations, probing a wide variety of genotype–phenotype models, show that TATES''s false positive rate is correct, and that TATES''s statistical power to detect causal variants explaining 0.5% of the variance can be 2.5–9 times higher than the power of univariate tests based on composite scores and 1.5–2 times higher than the power of the standard MANOVA. Unlike other multivariate methods, TATES detects both genetic variants that are common to multiple phenotypes and genetic variants that are specific to a single phenotype, i.e. TATES provides a more complete view of the genetic architecture of complex traits. As the actual causal genotype–phenotype model is usually unknown and probably phenotypically and genetically complex, TATES, available as an open source program, constitutes a powerful new multivariate strategy that allows researchers to identify novel causal variants, while the complexity of traits is no longer a limiting factor.  相似文献   

11.
The positive ascertainment of location differences in a multivariate comparison of two or more groups gives rise to the question for the contribution of the single variables or of subsets of variables to the multivariate difference. In this paper two methods are proposed to accomplish the original multivariate test by tests in variable subsets or in single variables using a closed test procedure and Holm's procedure, respectively. Both control the multiple level of the whole procedure.  相似文献   

12.
Many studies aim to assess whether a therapy has a beneficial effect on multiple outcomes simultaneously relative to a control. Often the joint null hypothesis of no difference for the set of outcomes is tested using separate tests with a correction for multiple tests, or using a multivariate T 2-like MANOVA or global test. However, a more powerful test in this case is a multivariate one-sided or one-directional test directed at detecting a simultaneous beneficial treatment effect on each outcome, though not necessarily of the same magnitude. The Wei-Lachin test is a simple 1 df test obtained from a simple sum of the component statistics that was originally described in the context of a multivariate rank analysis. Under mild conditions this test provides a maximin efficient test of the null hypothesis of no difference between treatment groups for all outcomes versus the alternative hypothesis that the experimental treatment is better than control for some or all of the component outcomes, and not worse for any. Herein applications are described to a simultaneous test for multiple differences in means, proportions or life-times, and combinations thereof, all on potentially different scales. The evaluation of sample size and power for such analyses is also described. For a test of means of two outcomes with a common unit variance and correlation 0.5, the sample size needed to provide 90% power for two separate one-sided tests at the 0.025 level is 64% greater than that needed for the single Wei-Lachin multivariate one-directional test at the 0.05 level. Thus, a Wei-Lachin test with these operating characteristics is 39% more efficient than two separate tests. Likewise, compared to a T 2-like omnibus test on 2 df, the Wei-Lachin test is 32% more efficient. An example is provided in which the Wei-Lachin test of multiple components has superior power to a test of a composite outcome.  相似文献   

13.
The Jonckheere test is a widely used test for trend in the nonparametric location model. We present an analogue of Jonckheere's test which can be performed both for normally and binomially distributed endpoints. This test is a contrast test, therefore, we can also construct a reverse test. It is shown that in several situations the proposed tests are superior to the Helmert and the reverse-Helmert contrast tests in terms of size and power, especially for finite dichotomous data. The tests are applied to data of two preclinical studies.  相似文献   

14.
Typical animal carcinogenicity studies involve the comparison of several dose groups to a negative control. The uncorrected asymptotic Cochran‐Armitage trend test with equally spaced dose scores is the most frequently used test in such set‐ups. However, this test based on a weighted linear regression on proportions. It is well known that the Cochran‐Armitage test lacks in power for other shapes than the assumed linear one. Therefore, dichotomous multiple contrast tests are introduced. These build the maximum over several single contrasts, where each of them is chosen appropriately to cover a specific dose‐response shape. An extensive power study has been conducted to compare multiple contrast tests with the approaches used so far. Crucial results will be presented in this paper. Moreover, exact tests and continuity corrected versions are introduced and compared to the traditional uncorrected approaches regarding size and power behaviour. A trend test for any shape of the dose‐response relationship for either crude tumour rates or mortality‐ adjusted rates based on the simple Poly‐3 transformation is proposed for evaluation of carcinogenicity studies.  相似文献   

15.
Diagnostic tests play an important role in clinical practice. The objective of a diagnostic test accuracy study is to compare an experimental diagnostic test with a reference standard. The majority of these studies dichotomize test results into two categories: negative and positive. But often the underlying test results may be categorized into more than two, ordered, categories. This article concerns the situation where multiple studies have evaluated the same diagnostic test with the same multiple thresholds in a population of non‐diseased and diseased individuals. Recently, bivariate meta‐analysis has been proposed for the pooling of sensitivity and specificity, which are likely to be negatively correlated within studies. These ideas have been extended to the situation of diagnostic tests with multiple thresholds, leading to a multinomial model with multivariate normal between‐study variation. This approach is efficient, but computer‐intensive and its convergence is highly dependent on starting values. Moreover, monotonicity of the sensitivities/specificities for increasing thresholds is not guaranteed. Here, we propose a Poisson‐correlated gamma frailty model, previously applied to a seemingly quite different situation, meta‐analysis of paired survival curves. Since the approach is based on hazards, it guarantees monotonicity of the sensitivities/specificities for increasing thresholds. The approach is less efficient than the multinomial/normal approach. On the other hand, the Poisson‐correlated gamma frailty model makes no assumptions on the relationship between sensitivity and specificity, gives consistent results, appears to be quite robust against different between‐study variation models, and is computationally very fast and reliable with regard to the overall sensitivities/specificities.  相似文献   

16.
Based on the concept of the multiple level of significance two criteria for assessing the performance of multiple tests are proposed: The simultaneous power is defined as the probability of rejecting all false null hypotheses. The probability of a correct decision is defined as the probability of correctly rejecting all false null hypotheses and accepting all true ones. Both criteria are discussed for nonstagewise and stagewise procedures in case of independent test statistics. For the example of 5 independently and normally distributed test statistics the values of the two criteria are calcutated under reasonably simple alternatives.  相似文献   

17.
In this study, we aimed to detect the proportion of Candida dubliniensis among yeast strains previously identified as C. albicans by using several phenotypic methods and PCR. For this purpose, we screened 300 strains by using phenotypic tests suggested for the identification of C. dubliniensis in the literature, but we detected high proportion of false-positive reactions. Only two strains (0.6%) were detected as true C. dubliniensis by PCR and API ID 32C methods. Moreover, these two strains gave the expected results with all the phenotypic tests, including modified salt tolerance test for C. dubliniensis. In conclusion, none of the phenotypic methods, except for the modified salt tolerance test, revealed 100% successful results in discrimination of C. albicans and C. dubliniensis species. However, in the tobacco agar test, the rate of false positivity was as low as 0.6%. We suggest that in the case of absence of PCR and other automatized identification systems, these two phenotypic tests can be used in routine laboratories to obtain a presumptive result.  相似文献   

18.
The Cochran–Armitage (CA) linear trend test for proportions is often used for genotype‐based analysis of candidate gene association. Depending on the underlying genetic mode of inheritance, the use of model‐specific scores maximises the power. Commonly, the underlying genetic model, i.e. additive, dominant or recessive mode of inheritance, is a priori unknown. Association studies are commonly analysed using permutation tests, where both inference and identification of the underlying mode of inheritance are important. Especially interesting are tests for case–control studies, defined by a maximum over a series of standardised CA tests, because such a procedure has power under all three genetic models. We reformulate the test problem and propose a conditional maximum test of scores‐specific linear‐by‐linear association tests. For maximum‐type, sum and quadratic test statistics the asymptotic expectation and covariance can be derived in a closed form and the limiting distribution is known. Both the limiting distribution and approximations of the exact conditional distribution can easily be computed using standard software packages. In addition to these technical advances, we extend the area of application to stratified designs, studies involving more than two groups and the simultaneous analysis of multiple loci by means of multiplicity‐adjusted p‐values for the underlying multiple CA trend tests. The new test is applied to reanalyse a study investigating genetic components of different subtypes of psoriasis. A new and flexible inference tool for association studies is available both theoretically as well as practically since already available software packages can be easily used to implement the suggested test procedures.  相似文献   

19.
Wang T  Wu L 《Biometrics》2011,67(4):1452-1460
Multivariate one-sided hypotheses testing problems arise frequently in practice. Various tests have been developed. In practice, there are often missing values in multivariate data. In this case, standard testing procedures based on complete data may not be applicable or may perform poorly if the missing data are discarded. In this article, we propose several multiple imputation methods for multivariate one-sided testing problem with missing data. Some theoretical results are presented. The proposed methods are evaluated using simulations. A real data example is presented to illustrate the methods.  相似文献   

20.
An adaptive multivariate test is proposed for a subset of regression coefficients in a linear model. This adaptive method uses the studentized deleted residuals to calculate an appropriate weight for each observation. The weights are then used to compute Wilk's lambda for the weighted model. The adaptive test is performed by permuting the independent variables corresponding to those parameters that are assumed to equal zero in the null hypothesis. The permuted variables are then weighted to obtain a permutation test statistic that is used to estimate the p-value. An example is presented of a multivariate regression that uses systolic and diastolic blood pressure as dependent variables with age and body mass index as independent variables. The simulation results show that the adaptive test maintains its size for the three multivariate error distributions that were used in the study. For normal error models the power of the adaptive test nearly equaled that of the non-adaptive test. For models that used non-normal errors the adaptive test was considerably more powerful than the traditional non-adaptive test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号