首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructose feeding induces moderate increases in blood pressure levels in normal rats, which is associated with hyperinsulinemia, insulin resistance, and impaired glucose tolerance. Increased vascular resistance, sodium retention, and sympathetic overactivity have been proposed to contribute to the blood pressure elevation in this model. Taurine, a sulphur-containing amino acid, has been reported to have antihypertensive and sympatholytic actions. In the present study, the effects of taurine on blood pressure, plasma levels of glucose and insulin, glucose tolerance, and renal function were studied in fructose-fed rats. Fructose-fed rats had higher blood pressure and elevated plasma levels of insulin and glucose. The plasma glucose levels were higher in fructose-fed rats than in controls at 15, 30, and 60 min after the oral glucose load. Treatment with 2% taurine in drinking water prevented the blood pressure elevation and attenuated the hyperinsulinemia in fructose-fed rats. The exaggerated glucose levels in response to the oral glucose load was also prevented by taurine administration. Thus, taurine supplementation could be beneficial in circumventing metabolic alterations in insulin resistance.  相似文献   

2.
Objective: To assess the effect of taurine supplementation on respiratory gas exchange, which might reflect the improved metabolism of glucose and/or lipid in the type 2 diabetic Otsuka Long‐Evans Tokushima Fatty (OLETF) rats. Research Methods and Procedures: Male OLETF rats (16 weeks of age) were randomly divided into two groups: unsupplemented group and taurine‐supplemented (3% in drinking water) group. After 9 weeks of treatment, indirect calorimetry and insulin tolerance tests were conducted. The amounts of visceral fat pads, tissue glycogen, the blood concentrations of glucose, triacylglycerol, taurine, and electrolytes, and the level of hematocrit were compared between groups. A nondiabetic rat strain (Long‐Evans Tokushima Otsuka) was used as the age‐matched normal control. Results: The indirect calorimetry showed that the treatment of OLETF rats with taurine could reduce a part of postprandial glucose oxidation possibly responsible for the increase of triacylglycerol synthesis in the body. Taurine supplementation also improved hyperglycemia and insulin resistance and increased muscle glycogen content in the OLETF rats. Supplementation with taurine increased the blood concentration of taurine and electrolyte and fluid volume, all of which were considered to be related to the improvement of metabolic disturbance in OLETF rats. Discussion: Taurine supplementation may be an effective treatment for glucose intolerance and fat/lipid accumulation observed in type 2 diabetes associated with obesity. These metabolic changes might be ascribed, in part, to the alteration of circulating blood profiles, where the improved hyperglycemia and/or the blood accumulation of taurine itself would play roles.  相似文献   

3.
Summary. High fructose feeding induces moderate increases in blood pressure of normal rats, associated with hyperinsulinemia, insulin resistance and impaired glucose tolerance. Increased vascular resistance, and sodium retention have been proposed to contribute to the blood pressure elevation in this model. Taurine, a sulphur-containing amino acid has been reported to have antihypertensive and antinatriuretic actions. In addition, taurine is shown to increase the excretion of nitrite and kinin availability and hence would be expected to improve the vascular tone. In the present study, the involvement of kinins in the blood pressure lowering effect of taurine was investigated by coadministration of Hoe 140, a kinin B2 receptor antagonist along with taurine. The effects of taurine on plasma and urinary concentrations of sodium and tissue kallikrein activity were studied in high fructose-fed rats. Fructose-fed rats had elevated blood pressure and decreased levels of sodium in urine. Treatment with 2% taurine in drinking water prevented the blood pressure elevation and coadministration of Hoe 140 abolished this effect of taurine in high fructose-fed rats. The findings confirm the antinatriuretic action of taurine and also suggest a role for the kinins in the mechanism of taurine action in diet-induced hypertension.  相似文献   

4.
The present work investigates the involvement of kinins in the effects of taurine in fructose-fed hypertensive rats. The effects of taurine on blood pressure, plasma glucose, insulin, and the insulin sensitivity index were determined. Angiotensin-converting enzyme (ACE) activity and nitrite content in plasma, plasma and tissue kallikrein activity, and taurine content were also investigated. The blood pressure changes in response to the coadministration of inhibitors of the synthesis of nitric oxide (NO), prostaglandins (PGs), or a kinin receptor blocker along with taurine was also evaluated. Fructose-fed rats had higher blood pressure and elevated plasma levels of glucose and insulin. Kallikrein activity, taurine, and nitrite contents were significantly lower in fructose-fed rats as compared with controls. The increases in systolic blood pressure, hyperglycemia, and hyperinsulinemia were controlled by taurine administration in fructose-fed rats. ACE activity was lower, while nitrite and taurine content and kallikrein activity were higher, in taurine-supplemented rats as compared with fructose-fed rats. A significant increase in blood pressure was observed in rats cotreated with the inhibitors Hoe 140 (a kinin receptor blocker), L-NAME (a NO synthase inhibitor), or indomethacin (a PG synthesis inhibitor) with taurine for 1 week as compared with taurine-treated fructose-fed rats. This suggests that the antihypertensive effect of taurine in fructose-fed rats was blocked by the inhibitors. Augmented kallikrein activity and, hence, increased kinin availability may be implicated in the effects of taurine in fructose-fed hypertensive rats.  相似文献   

5.
Taurine is a conditionally essential amino acid for human that is involved in the control of glucose homeostasis; however, the mechanisms by which the amino acid affects blood glucose levels are unknown. Using an animal model, we have studied these mechanisms. Mice were supplemented with taurine for 30 d. Blood glucose homeostasis was assessed by intraperitoneal glucose tolerance tests (IPGTT). Islet cell function was determined by insulin secretion, cytosolic Ca2+ measurements and glucose metabolism from isolated islets. Islet cell gene expression and translocation was examined via immunohistochemistry and quantitative real-time polymerase chain reaction. Insulin signaling was studied by Western blot. Islets from taurine-supplemented mice had: (i) significantly higher insulin content, (ii) increased insulin secretion at stimulatory glucose concentrations, (iii) significantly displaced the dose-response curve for glucose-induced insulin release to the left, (iv) increased glucose metabolism at 5.6 and 11.1-mmol/L concentrations; (v) slowed cytosolic Ca2+ concentration ([Ca2+]i) oscillations in response to stimulatory glucose concentrations; (vi) increased insulin, sulfonylurea receptor-1, glucokinase, Glut-2, proconvertase and pancreas duodenum homeobox-1 (PDX-1) gene expression and (vii) increased PDX-1 expression in the nucleus. Moreover, taurine supplementation significantly increased both basal and insulin stimulated tyrosine phosphorylation of the insulin receptor in skeletal muscle and liver tissues. Finally, taurine supplemented mice showed an improved IPGTT. These results indicate that taurine controls glucose homeostasis by regulating the expression of genes required for glucose-stimulated insulin secretion. In addition, taurine enhances peripheral insulin sensitivity.  相似文献   

6.

Background:

We investigated the effects of Withania somnifera root (WS) on insulin resistance, tumor necrosis factor α (TNF-α), and interleukin-6 (IL-6) in fructose-fed rats.

Methods:

Forty-eight Wistar-Albino male rats were randomly divided into four groups (n=12); Group I as control, Group II as sham-treated with WS by 62.5mg/g per diet, Group III fructose-fed rats received 10%W/V fructose, and Group IV fructose- and WS-fed rats. After eight weeks blood samples were collected to measure glucose, insulin, IL-6, and TNF-α levels in sera.

Results:

Blood glucose, insulin, homeostasis model assessment for insulin resistance (HOMA-R), IL-6, and TNF-α levels were all significantly greater in the fructose-fed rats than in the controls. Treatment with WS significantly (P < 0.05) inhibited the fructose-induced increases in glucose, insulin, HOMA-R, IL-6, and TNF-α.

Conclusion:

Our data suggest that WS normalizes hyperglycemia in fructose-fed rats by reducing inflammatory markers and improving insulin sensitivity.Key Words: Withania somnifera, Insulin resistance, IL-6, TNF- α  相似文献   

7.
The study examined the effects of galangin (GA) on oxidative stress, inflammatory cytokine levels and nuclear factor-kappa B (NF-κB) activation in fructose-fed rat liver. Adult male albino Wistar rats were divided into 4 groups. Groups 1 and 4 received the control diet containing starch as the source of carbohydrate while groups 2 and 3 were fed a diet containing fructose. Groups 3 and 4 additionally received GA (100 μg/kg, p.o) from the 15th day. At the end of 60 days, the levels of plasma glucose, insulin and triglycerides, insulin sensitivity indices and oxidative stress markers in the liver were determined. Cytokines of interest were assayed by ELISA and RT-PCR and NF-κB p65 nuclear translocation by Western blot and RT-PCR. Compared to control diet-fed animals, fructose-fed animals developed hyperglycemia, hyperinsulinemia, hypertriglyceridemia and insulin resistance (IR) (all p < 0.01). GA prevented the rise in plasma glucose, insulin and triglycerides and improved insulin sensitivity. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels in plasma and the mRNA and protein levels of TNF-α and transforming growth factor-β1(TGF-β1) in liver were significantly higher in fructose-fed rats than control rats. However, treatment with GA downregulated the expression of these cytokines. Translocation of NF-κB into the nucleus was also increased in fructose diet-fed animals, which was prevented by GA. These results suggest that GA prevents oxidative damage and has a downregulatory effect on the inflammatory pathway in liver of fructose-fed rats.  相似文献   

8.
Taurine is found at millimolar concentration in the retina and retinal pigment epithelium. High concentrations of taurine are essential for maintenance of retinal function. Taurine uptake by retina and retinal pigment epithelium was significantly enhanced by physiological concentrations of insulin as well as by high glucose concentrations. The results indicate that both, glucose and insulin enhanced taurine uptake occur through an increase in transport capacity which offset an additional, small decrease in affinity of the taurine carrier. Similar results were observed in retina and retinal pigment epithelium from streptozotocin-induced diabetic rats, suggesting that glucose and insulin regulate the taurine carrier through the same mechanism.  相似文献   

9.
Fructose-fed rats were more susceptible to peroxidative damage as measured by thiobarbituric acid reactive species. The concentrations of lipid peroxides, diene conjugates, lipofuscin and hydroperoxides were significantly higher. The levels of enzymic antioxidants such as vitamin C, vitamin E and glutathione and activities of antioxidant enzymes were significantly lower in fructose-fed rats. When these rats received taurine in drinking water, peroxidative damage was minimal in both plasma and liver. Taurine was effective in inducing the antioxidant potential in fructose-fed rats. Increased peroxidative damage in liver is likely to be associated with fructose dependent pathology, which could be reduced by taurine by enhancing the antioxidant potential.  相似文献   

10.
The objective of this study was to determine whether the effects of a fructose diet, which causes hyperinsulinemia, insulin resistance, and hypertension in male rats, are dependent on sex. Blood pressure was measured via the tail-cuff method, and oral glucose tolerance tests were performed to assess insulin sensitivity. Blood pressure in female rats did not differ between fructose-fed and control rats at any time point (126 +/- 5 and 125 +/- 3 mmHg at week 9 for fructose-fed and control rats, respectively) nor was there a difference in any metabolic parameter measured. Furthermore, the vascular insulin resistance that is present in male fructose-fed rats was not observed. After ovariectomy, fructose caused a significant change in systolic blood pressure from baseline compared with fructose-fed ovary-intact rats (change of 21 +/- 5 vs. -2 +/- 4 mmHg). The results demonstrate that females do not develop hypertension or hyperinsulinemia upon fructose feeding except after ovariectomy, suggesting that female sex hormones may confer protection against the effects of a fructose diet.  相似文献   

11.
The cytoprotective role of taurine in exercise-induced muscle injury   总被引:4,自引:0,他引:4  
Summary.  Intense exercise is thought to increase oxidative stress and damage muscle tissue. Taurine is present in high concentration in skeletal muscle and may play a role in cellular defenses against free radical-mediated damage. The aim of this study was to determine if manipulating muscle levels of taurine would alter markers of free radical damage after exercise-induced injury. Adult male Sprague-Dawley rats were supplemented via the drinking water with either 3% (w/v) taurine (n = 10) or the competitive taurine transport inhibitor, β-alanine (n = 10), for one month. Controls (n = 20) drank tap water containing 0.02% taurine and all rats were placed on a taurine free diet. All the rats except one group of sedentary controls (n = 10) were subjected to 90 minutes of downhill treadmill running. Markers of cellular injury and free radical damage were determined along with tissue amino acid content. The 3% taurine treatment raised plasma levels about 2-fold and 3% β-alanine reduced plasma taurine levels about 50%. Taurine supplementation (TS) significantly increased plasma glutamate levels in exercised rats. Exercise reduced plasma methionine levels and taurine prevented its decline. Taurine supplementation increased muscle taurine content significantly in all muscles except the soleus. β-alanine decreased muscle taurine content about 50% in all the muscles examined. Lipid peroxidation (TBARS) was significantly increased by exercise in the extensor digitorium longus (EDL) and gastrocnemius (GAST) muscles. Both taurine and β-alanine completely blocked the increase in TBARs in the EDL, but had no effect in the GAST. Muscle content of the cytosolic enzyme, lactate dehydrogenase (LDH) was significantly decreased by exercise in the GAST muscle and this effect was attenuated by both taurine and β-alanine. Muscle myeloperoxidase (MPO) activity was significantly elevated in the gastrocnemius muscle, but diet had no effect. MPO activity was significantly increased by exercise in the liver and both taurine and β-alanine blocked this effect. There was no effect of either exercise or the diets on MPO activity in the lung or spleen. Running performance as assessed by a subjective rating scale was improved by taurine supplementation and there was a significant loss in body weight in the β-alanine-treated rats 24 hours after exercise. In summary, taurine supplementation or taurine depletion had measurable cytoprotective actions to attenuate exercise-induced injury. Received October 22, 2001 Accepted February 1, 2002  相似文献   

12.
Exposure to high concentrations of glucose and insulin results in insulin resistance of metabolic target tissues, a characteristic feature of type 2 diabetes. High glucose has also been associated with oxidative stress, and increased levels of reactive oxygen species have been proposed to cause insulin resistance. To determine whether oxidative stress contributes to insulin resistance induced by hyperglycemia in vivo, nondiabetic rats were infused with glucose for 6 h to maintain a circulating glucose concentration of 15 mM with and without coinfusion of the antioxidant N-acetylcysteine (NAC), followed by a 2-h hyperinsulinemic-euglycemic clamp. High glucose (HG) induced a significant decrease in insulin-stimulated glucose uptake [tracer-determined disappearance rate (Rd), control 41.2 +/- 1.7 vs. HG 32.4 +/- 1.9 mg. kg-1. min-1, P < 0.05], which was prevented by NAC (HG + NAC 45.9 +/- 3.5 mg. kg-1. min-1). Similar results were obtained with the antioxidant taurine. Neither NAC nor taurine alone altered Rd. HG caused a significant (5-fold) increase in soleus muscle protein carbonyl content, a marker of oxidative stress that was blocked by NAC, as well as elevated levels of malondialdehyde and 4-hydroxynonenal, markers of lipid peroxidation, which were reduced by taurine. In contrast to findings after long-term hyperglycemia, there was no membrane translocation of novel isoforms of protein kinase C in skeletal muscle after 6 h. These data support the concept that oxidative stress contributes to the pathogenesis of hyperglycemia-induced insulin resistance.  相似文献   

13.
Although lipid excess can impair beta-cell function in vitro, short-term high-fat feeding in normal rats produces insulin resistance but not hyperglycemia. This study examines the effect of long-term (10-mo) high polyunsaturated fat feeding on glucose tolerance in Wistar rats. The high fat-fed compared with the chow-fed group was 30% heavier and 60% fatter, with approximately doubled fasting hyperinsulinemia (P < 0.001) but only marginal fasting hyperglycemia (7.5 +/- 0.1 vs. 7.2 +/- 0.1 mmol/l, P < 0.01). Insulin sensitivity was approximately 67% lower in the high-fat group (P < 0.01). The acute insulin response to intravenous arginine was approximately double in the insulin-resistant high-fat group (P < 0.001), but that to intravenous glucose was similar in the two groups. After the intravenous glucose bolus, plasma glucose decline was slower in the high fat-fed group, confirming mild glucose intolerance. Therefore, despite severe insulin resistance, there was only a mildly elevated fasting glucose level and a relative deficiency in glucose-stimulated insulin secretion; this suggests that a genetic or congenital susceptibility to beta-cell impairment is required for overt hyperglycemia to develop in the presence of severe insulin resistance.  相似文献   

14.
Summary. Taurine has several biological processes such as hypoglycemic action, antioxidation, detoxification, etc. To assess the effect of taurine administration on the guinea pigs with hyperglycemia, blood glucose, C-peptide levels together with morphologic alterations in the pancreatic ultrastructure were investigated in terms of hypoglycemic action and malondialdehyde and total sulfhydryl group levels with regard to oxidation-antioxidation relation. Animals were divided into four groups of six. Glucose supplementation group was administrated a single dose of glucose (400mg/kg, i.p.) injection. Glucose and taurine supplementation group was administrated glucose treatment (a single dose, 400mg/kg, i.p.) following taurine (a single dose, 200mg/kg, i.p.). Taurine and glucose supplementation group was administered taurine treatment (a single dose, 200mg/kg, i.p.) following glucose treatment (a single dose, 400mg/kg, i.p.). Control animals received no treatment. Blood samples were collected at the end of the experiments for the determination of glucose, C-peptide (indicator of insulin secretion), lipid peroxidation (thiobarbituric acid reactive substances), and total sulfhydryl groups levels. Pancreatic tissue samples were then collected and processed for transmission electron microscopy. The findings showed that glucose supplementation following taurine administration significantly decreased blood glucose level by increasing C-peptide level and the pancreatic secretion stimulated morphologically and insignificantly changed thiobarbituric acid reactive substances and total sulfhydryl group levels. These observations suggest that taurine administration may be useful in hyperglycemia because of its hypoglycemic and protective effects.  相似文献   

15.
目的:探讨牛磺酸(taurine)对Ⅱ型糖尿病(diabetes mellitus,DM)大鼠血液流变学及氧化应激的影响。方法:将40只Wistar大鼠随机取10只为正常对照组(control组)、其余30只大鼠中取20只符合模型标准的大鼠随机分为糖尿病组(DM组)和牛磺酸治疗组(Tau组,采用20g/L牛磺酸生理盐水溶液治疗,200mg/kgbw),前两组注射等体积的生理盐水溶液。8周后,测3组大鼠血浆葡萄糖、糖化血红蛋白、超氧化物岐化酶(SOD)、丙二醛(MDA)及血液流变学指标。结果:与对照组相比,糖尿病大鼠血糖、MDA及糖化血红蛋白明显升高,SOD活性降低,全血粘度、红细胞聚集指数、红细胞压积明显增大,红细胞变形指数减小;牛磺酸能明显降低糖尿病大鼠的血糖、MDA和糖化血红蛋白(P〈0.05或P〈0.01),显著升高造模大鼠SOD(P〈0.01);并且明显降低大鼠全血黏度(P〈0.05)、降低红细胞聚集指数(P〈0.05),提高红细胞变性指数(P〈0.05)。结论:牛磺酸改善糖尿病大鼠的血液流变性可能与其提高大鼠的抗氧化能力有关,对防治糖尿病血管并发症有较好作用。  相似文献   

16.
The purpose of this study was to investigate the oxidative status in experimental hypothyroidism and the antioxidant effect of taurine supplementation. Forty male Sprague Dawley rats were randomly divided into four groups (group 1, control; group 2, control + taurine; group 3, propylthiouracil (PTU); group 4, PTU + taurine). Hypothyroidism was induced by giving 0.05% PTU in drinking water for 8 weeks. Taurine was supplemented in drinking water at a concentration of 1% for 5 weeks. Plasma (p < 0.05), red blood cell (p < 0.01), liver (p < 0.001) and kidney tissue (p > 0.05) malondialdehyde levels were increased in the PTU group compared with those of the control rats and were decreased in the PTU + taurine group compared with the PTU alone group. No significant changes were observed in glutathione levels of kidney and liver in the PTU group, but taurine supplementation significantly increased the glutathione levels of these tissues. Paraoxonase and arylesterase activities were decreased in the PTU group while taurine supplementation caused no significant changes in paraoxonase and arylesterase activities. These findings suggest that taurine supplementation may play a protective role against the increased oxidative stress resulting from hypothyroidism.  相似文献   

17.

Background

Pancreatic β-cells release insulin via an electrogenic response triggered by an increase in plasma glucose concentrations. The critical plasma glucose concentration has been determined to be ~3 mM, at which time both insulin and GABA are released from pancreatic β-cells. Taurine, a β-sulfonic acid, may be transported into cells to balance osmotic pressure. The taurine transporter (TauT) has been described in pancreatic tissue, but the function of taurine in insulin release has not been established. Uptake of taurine by pancreatic β-cells may alter membrane potential and have an effect on ion currents. If taurine uptake does alter β-cell current, it might have an effect on exocytosis of cytoplasmic vesicle. We wished to test the effect of taurine on regulating release of insulin from the pancreatic β-cell.

Methods

Pancreatic β-cell lines Hit-TI5 (Syrian hamster) and Rin-m (rat insulinoma) were used in these studies. Cells were grown to an 80% confluence on uncoated cover glass in RPMI media containing 10% fetal horse serum. The cells were then adapted to a serum-free, glucose free environment for 24 hours. At that time, the cells were treated with either 1 mM glucose, 1 mM taurine, 1 mM glucose + 1 mM taurine, 3 mM glucose, or 3 mM glucose + 1 mM taurine. The cells were examined by confocal microscopy for cytoplasmic levels of insulin.

Results

In both cell lines, 1 mM glucose had no effect on insulin levels and served as a control. Cells starved of glucose had a significant reduction (p<0.001) in the level of insulin, but this level was significantly higher than all other treatments. As expected, the 3 mM glucose treatment resulted in a statistically lower (p<0.001) insulin level than control cells. Interestingly, 1 mM taurine also resulted in a statistically lower level of insulin (p<0.001) compared to controls when either no glucose or 1 mM glucose was present. Cells treated with 1 mM taurine plus 3 mM glucose showed a level of insulin similar to that of 3 mM glucose alone.

Conclusions

Taurine administration can alter the electrogenic response in β-cell lines, leading to a change in calcium homeostasis and a subsequent decrease in intracellular insulin levels. The consequence of these actions could represent a method of increasing plasma insulin levels leading to a decrease in plasma glucose levels.
  相似文献   

18.
The present study was undertaken to determine whether supplementation with polymethoxylated flavones (PMFs) could ameliorate the fructose-induced hypertriglyceridemia and other metabolic abnormalities associated with insulin resistance (IR) in hamsters. Following feeding with the fructose diet, hamsters were supplemented orally with PMF-L or PMF-H (62.5 and 125 mg/kg/day) for 4 weeks. Both PMF-treated groups showed a statistically significant (p<0.05) decrease in serum triglyceride (TG) and cholesterol levels compared to the fructose-fed control group. The fructose control group at the end of the study showed elevated serum insulin and impaired insulin sensitivity (glucose intolerance). On the other hand, PMF-supplemented groups showed a reversal in these metabolic defects, including a decrease in insulin level and an improvement in glucose tolerance. PMF supplementation also reduced TG contents in the liver and heart and was able to regulate adipocytokines by significantly suppressing TNF-alpha, INF-gamma, IL-1beta and IL-6 expression and increasing adiponectin in IR hamsters. The mechanism of PMF on the activation of peroxisome proliferator-activated receptors (PPAR) was also explored. PMF-H supplementation significantly increased PPARalpha and PPARgamma protein expression in the liver. This is the first report of positive effects of PMF on adipocytokine production and on PPAR expression in IR hamsters. This study suggests that PMF can ameliorate hypertriglyceridemia and its anti-diabetic effects may occur as a consequence of adipocytokine regulation and PPARalpha and PPARgamma activation.  相似文献   

19.
Dawson R  Liu S  Jung B  Messina S  Eppler B 《Amino acids》2000,19(3-4):643-665
Summary. Taurine is present in high concentrations in mammalian tissues and has been implicated in cardiovascular control mechanisms. The aim of the present study was to evaluate the ability of taurine to attenuate salt-induced elevations in blood pressure and markers of damage to the kidney and cardiovascular system in stroke prone spontaneously hypertensive rats (SPSHR). Male SPSHR (6 weeks old) were placed on high salt diets that contained 1% (w/w) NaCl added to their normal chow for 84 days and then were switched to 3% added NaCl for the remaining 63 days of the study. SPSHR was given 1.5% taurine in the drinking water (n = 8), a taurine free diet (n = 8) or normal chow (n = 8). A final control group (n = 6) was not given high salt diets. High salt diets caused an acceleration in the development of hypertension in all groups. Taurine supplementation reduced ventricular hypertrophy and decreased urinary excretion of protein and creatinine. The taurine free diet did not alter serum or urinary excretion of taurine, but did result in elevated urinary nitrogen excretion, increased serum cholesterol levels, and impaired performance in a spatial learning task. Alterations in dietary taurine intake did not alter urinary or serum electrolytes (Na+, K+), but taurine supplementation did attenuate a rise in serum calcium seen with the high salt diets. Urinary excretion (μg/24 h) of epinephrine and dopamine was significantly reduced in SPSHR given 1% NaCl in the diet, but this effect was not seen in SPSHR on taurine free or supplemented diets. Taurine supplementation showed cardioprotective and renoprotective effects in SPSHR given high salt diets. Received April 12, 1999/Accepted September 13, 1999  相似文献   

20.
High fructose feeding induces insulin resistance, impaired glucose tolerance, and hypertension in rats and mimics most of the features of the metabolic syndrome X. The effects of a 6-week treatment with the transition metals administered in drinking water, vanadium (VOSO4.5H2O, 0.75 mg/mL) or tungsten (Na2O4W, 2 g/mL), were investigated on the reactivity to norepinephrine (NEPI) or acetylcholine (ACh) of thoracic aorta rings isolated from fructose (60%) or standard chow fed rats. Maximal effect (Emax) and pD2 (-log EC50) values were determined in each case in the presence or absence of endothelium, while the degree of insulin resistance was determined using the euglycemic hyper insulinemic glucose clamp technique. Aortic segments isolated from 6-week fructose-fed animals were characterized by NEPI hyperresponsiveness (increase in Emax) and endothelium-dependent NEPI supersensitivity (increase in pD2) without any change in the reactivity to ACh. Vanadium or tungsten administered in fructose-fed animals prevented both hypertension and NEPI hyperresponsiveness, while vanadium, but not tungsten, reduced NEPI supersensitivity. Vanadium, but not tungsten, increased the relaxing activity of ACh, both in control and fructose-fed animals. Insulin resistance associated with high fructose feeding was reversed by vanadium but not by tungsten treatment. The differential effects of the two transition metals on vascular responsiveness to NEPI or ACh may be explained by their differential effects on insulin sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号