首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Human embryonic stem cells express a unique set of microRNAs   总被引:41,自引:0,他引:41  
  相似文献   

5.
6.
7.
Embryonic stem (ES) cells are pluripotent cells derived from the inner cell mass (ICM) and the epiblast, and have been suggested to be a homogeneous population with characteristics intermediate between them. These cells express Oct3/4 and Rex1 genes, which have been used as markers to indicate the undifferentiated state of ES cells. Whereas Oct3/4 is expressed in totipotent and pluripotent cells in the mouse life cycle, Rex1 expression is restricted to the ICM, and is downregulated in pluripotent cell populations in the later stages, i.e. the epiblast and primitive ectoderm (PrE). To address whether ES cells comprise a homogeneous population equivalent to a certain developmental stage of pluripotent cells or a heterogeneous population composed of cells corresponding to various stages of differentiation, we established knock-in ES cell lines in which genes for fluorescent proteins were inserted into the Rex1 and Oct3/4 gene loci to visualize the expression of these genes. We found that undifferentiated ES cells included at least two different populations, Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells. The Rex1(-)/Oct3/4(+) and Rex1(+)/Oct3/4(+) populations could convert into each other in the presence of LIF. In accordance with our assumption that Rex1(+)/Oct3/4(+) cells and Rex1(-)/Oct3/4(+) cells have characteristics similar to those of ICM and early-PrE cells, Rex1(+)/Oct3/4(+) cells predominantly differentiated into primitive ectoderm and contributed to chimera formation, whereas Rex1(-)/Oct3/4(+) cells differentiated into cells of the somatic lineage more efficiently than non-fractionated ES cells in vitro and showed poor ability to contribute to chimera formation. These results confirmed that undifferentiated ES cell culture contains subpopulations corresponding to ICM, epiblast and PrE.  相似文献   

8.
Human embryonic stem (ES) cells are pluripotent cell lines that have been derived from the inner cell mass (ICM) of blastocyst stage embryos [1--3]. They are characterized by their ability to be propagated indefinitely in culture as undifferentiated cells with a normal karyotype and can be induced to differentiate in vitro into various cell types [1, 2, 4-- 6]. Thus, human ES cells promise to serve as an unlimited cell source for transplantation. However, these unique cell lines tend to spontaneously differentiate in culture and therefore are difficult to maintain. Furthermore, colonies may contain several cell types and may be composed of cells other than pluripotent cells [1, 2, 6]. In order to overcome these difficulties and establish lines of cells with an undifferentiated phenotype, we have introduced a reporter gene that is regulated by a promoter of an ES cell-enriched gene into the cells. For the introduction of DNA into human ES cells, we have established a specific transfection protocol that is different from the one used for murine ES cells. Human ES cells were transfected with enhanced green fluorescence protein (EGFP), under the control of murine Rex1 promoter. The transfected cells show high levels of GFP expression when in an undifferentiated state. As the cells differentiate, this expression is dramatically reduced in monolayer cultures as well as in the primitive endoderm of early stage (simple) embryoid bodies (EBs) and in mature EBs. The undifferentiated cells expressing GFP can be analyzed and sorted by using a Fluorescence Activated Cell Sorter (FACS). Thus, we have established lines of human ES cells in which only undifferentiated cells are fluorescent, and these cells can be followed and selected for in culture. We also propose that the pluripotent nature of the culture is made evident by the ability of the homogeneous cell population to form EBs. The ability to efficiently transfect human ES cells will provide the means to study and manipulate these cells for the purpose of basic and applied research.  相似文献   

9.
Oct3/4, a hallmark of the earliest stages of embryogenesis, is expressed in undifferentiated embryonal carcinoma (EC) and embryonic stem (ES) cells. Oct3/4 gene expression is dependent on the promoter region, the proximal enhancer and the newly identified distal enhancer. We have analysed in vivo occupancy of these elements. In undifferentiated EC and ES cells, strong footprints were detected at specific sites of all three regulatory elements. These were promptly lost upon RA treatment in ES cells and in P19 EC cells, in parallel with sharply reduced Oct3/4 mRNA levels. Thus, the occupancy of regulatory elements is coupled with Oct3/4 expression, and RA treatment causes coordinated factor displacement, leading to extinction of gene activity. In F9 EC cells, footprint was first abolished at the proximal enhancer. However, this loss of binding site occupancy did not result in a decrease in Oct3/4 mRNA levels. The partial factor displacement seen in F9 EC cells, combined with the observation that EC and ES cells utilize the proximal and distal enhancers in differential manner, indicate the complex pattern of Oct3/4 gene regulation, which could reflect a cell type- and lineage-specific expression of the gene in vivo.  相似文献   

10.
11.
Embryonic stem (ES) cell lines represent a population of undifferentiated pluripotent cells capable of multilineage differentiation in vitro. Although very useful for studying developmental processes, human ES cell lines have also been suggested as a potential and unlimited source for cellular transplantation and the treatment of human disease. The proteomic basis of embryonic stemness (pluripotentiality and multilineage differentiation) and the transitions that lead to specific cell lineages however, remain to be defined. As an important first step in defining these processes, we have performed a proteomic analysis of undifferentiated mouse R1 ES cell lines using pH 3-10, 4-7 and 6-11 two-dimensional electrophoresis gels, matrix-assisted laser desorption/ionization and tandem mass spectrometry. Of the 700 gel spots analyzed, 241 distinct protein species were identified corresponding to 218 unique proteins, with a significant proportion functionally related to protein expression.  相似文献   

12.
Previous studies have shown that there is a strict requirement for fibroblast growth factor-4 (FGF-4) during mammalian embryogenesis, and that FGF-4 expression in embryonic stem (ES) cells and embryonal carcinoma (EC) cells are controlled by a powerful downstream distal enhancer. More recently, mouse ES cells were shown to express significantly more FGF-4 mRNA than human ES cells. In the work reported here, we demonstrate that mouse EC cells also express far more FGF-4 mRNA than human EC cells. Using a panel of FGF-4 promoter/reporter gene constructs, we demonstrate that the enhancer of the mouse FGF-4 gene is approximately tenfold more active than its human counterpart. Moreover, we demonstrate that the critical difference between the mouse and the human FGF-4 enhancer is a 4 bp difference in the sequence of an essential GT box. Importantly, we demonstrate that changing 4 bp in the human enhancer to match the sequence of the mouse GT box elevates the activity of the human FGF-4 enhancer to the same level as that of the mouse enhancer. We extended these studies by examining the roles of Sp1 and Sp3 in FGF-4 expression. Although we demonstrate that Sp3, but not Sp1, can activate the FGF-4 promoter when artificially tethered to the FGF-4 enhancer, we show that Sp3 is not essential for expression of FGF-4 mRNA in mouse ES cells. Finally, our studies with human EC cells suggest that the factor responsible for mediating the effect of the mouse GT box is unlikely to be Sp1 or Sp3, and this factor is either not expressed in human EC cells or it is not sufficiently active in these cells.  相似文献   

13.
细胞周期蛋白依赖性激酶6(cyclin dependent kinase 6,Cdk6)对胚胎早期发育有着重要的作用.然而,它在胚胎干(embryonic stem,ES)细胞中的生物学功能仍不清楚.在该研究中,我们运用RNA干扰技术和基因表达分析方法探索了Cdk6在小鼠胚胎干细胞中的功能及分子机制.结果表明:Cdk6的表达水平与小鼠ES细胞的自我更新密切相关.首先,维甲酸(RA)处理和白血病抑制因子(LIF)去除实验显示 ,随着ES细胞的分化,Cdk6的表达水平明显降低.更为重要的是,RNA干扰介导的Cdk6表达抑制导致ES细胞自我更新相关基因的显著下调,同时伴随细胞分化基因的表达激活,提示Cdk6对维持ES细胞自我更新至关重要.  相似文献   

14.
15.
16.
The mitogen-activated protein kinase (MAPK) pathway is important in melanoma. In this pathway, DUSP6 phosphatase negatively controls the activation of extracellular signal-regulated (ERK) kinase. Through comparison of melanoma signalling pathways between immortal mouse melanocytes and their tumourigenic derivatives, retrieved from mouse xenografts, we identified a molecularly distinct subtype of melanoma, characterized by reduced ERK activity and increased DUSP6 expression. Overexpression of DUSP6 enhanced anchorage-independent growth and invasive ability of immortal mouse melanocytes, suggesting that increased DUSP6 expression contributes to melanoma formation in the mouse xenografts. In contrast, reduced tumourigenicity was observed after DUSP6 overexpression in human melanoma cells. A minority of thick human primary melanomas had high DUSP6 expression and the same poor melanoma-specific survival as the majority of thick primaries with low DUSP6 levels. We have demonstrated that DUSP6 is important in melanoma and that it plays a different role in our distinct subtype of mouse melanoma compared with that in classic human melanoma.  相似文献   

17.
Oct4 plays an essential role in maintaining the inner cell mass and pluripotence of embryonic stem (ES) cells. The expression of Oct4 is regulated by the proximal enhancer and promoter in the epiblast and by the distal enhancer and promoter at all other stages in the pluripotent cell lineage. Here we report that the orphan nuclear receptor LRH-1, which is expressed in undifferentiated ES cells, can bind to SF-1 response elements in the proximal promoter and proximal enhancer of the Oct4 gene and activate Oct4 reporter gene expression. LRH-1 is colocalized with Oct4 in the inner cell mass and the epiblast of embryos at early developmental stages. Disruption of the LRH-1 gene results in loss of Oct4 expression at the epiblast stage and early embryonic death. Using LRH-1(-/-) ES cells, we also show that LRH-1 is required to maintain Oct4 expression at early differentiation time points. In vitro and in vivo results show that LRH-1 plays an essential role in the maintenance of Oct4 expression in ES cells at the epiblast stage of embryonic development, thereby maintaining pluripotence at this crucial developmental stage prior to segregation of the primordial germ cell lineage at gastrulation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号