首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitrite therapy is more effective in cerebral ischemia when administered earlier. It would be beneficial during the hyperacute stages of stroke if the nitrite effect is demonstrated in intracerebral hemorrhage (ICH). When nitrite is injected intravenously 3 h after ICH induction in rats, most doses of nitrite provided no beneficial effects on behavioral deficits, brain edema and hematoma volumes. A high dose of nitrite, however, decreased hematoma volume, but not brain edema. Peri-hematomal apoptosis and inflammation were similar between the control and nitrite groups. Nitrite therapy may be considered a therapeutic option in hyperacute stroke because nitrite therapy is tolerated in ICH as well.  相似文献   

2.
Our data have shown that nitrite therapy can rescue the ischemic brain when injected <3 h after cerebral ischemic-reperfusion (I/R) injury and its effects can be prolonged to 4.5 h in combination with memantine. We investigated whether or not long-term nitrite therapy is beneficial in ischemic brains. Sodium nitrite (1-100 μg/kg ip) or saline were administered to rats subjected to focal I/R injury for 7 days beginning 24 h after I/R. Behavioral tests for 5 weeks revealed better functional recovery in the high-dose nitrite group than the control group. Other nitrite groups with relatively low doses showed no functional benefits. Hemispheric atrophy was attenuated by approximately 30% in the high-dose nitrite group. High-dose nitrite therapy also reduced inflammatory cytokine levels and caspase activity in the subacute period, and increased BrdU+MAP2+ and BrdU+laminin+ cells, and vascular density in the 5-week ischemic brain. Long-term nitrite therapy, when initiated 24 h after I/R, corrected the subacute hostile environment, induced tissue and vascular regeneration, and improved functional recovery. Early and subsequent long term nitrite therapy may be effective in the management for ischemic stroke patients.  相似文献   

3.
Ischemic stroke is a neurovascular disease treatable by thrombolytic therapy, but the therapy has to be initiated within 3 h of the incident. This therapeutic limitation stems from the secondary injury which results mainly from oxidative stress and inflammation. A potent antioxidant/anti-inflammatory agent, caffeic acid phenethyl ester (CAPE) has potential to mitigate stroke's secondary injury, and thereby widening the therapeutic window. We observed that CAPE protected the brain in a dose-dependent manner (1-10 mg/kg body weight) and showed a wide therapeutic window (about 18 h) in a rat model of transient focal cerebral ischemia and reperfusion. The treatment also increased nitric oxide and glutathione levels, decreased lipid peroxidation and nitrotyrosine levels, and enhanced cerebral blood flow. CAPE down-regulated inflammation by blocking nuclear factor kappa B activity. The affected mediators included adhesion molecules (intercellular adhesion molecule-1 and E-selectin), cytokines (tumor necrosis factor-alpha and interleukin-1beta) and inducible nitric oxide synthase. Anti-inflammatory action of CAPE was further documented through reduction of ED1 (marker of activated macrophage/microglia) expression. The treatment inhibited apoptotic cell death by down-regulating caspase 3 and up-regulating anti-apoptotic protein Bcl-xL. Conclusively, CAPE is a promising drug candidate for ischemic stroke treatment due to its inhibition of oxidative stress and inflammation, and its clinically relevant wide therapeutic window.  相似文献   

4.
Thiazolidinediones (TZDs) may prevent or attenuate CNS injury arising from an ischemic event. We performed meta-analysis of experimental studies in which a TZD (either rosiglitazone or pioglitazone) was administered in a rodent model of focal or global cerebral ischemia. Infarct volume was the primary endpoint for analysis of drug efficacy, and neurological outcome was also assessed. We identified 31 studies through the use of PubMed and Embase, 22 of which met our pre-specified inclusion criteria and were analyzed with the Cochrane Review Manager software. Treatment with TZDs decreased infarct volume and improved neurological outcome regardless of study quality, dose timing, or ischemia model (transient or permanent). Rosiglitazone and pioglitazone were similarly effective in reducing infarct volume and protecting neurologic function. Importantly, the collective data suggest that pre-treatment with a TZD is not required for neuroprotection, although additional studies are clearly needed to define the breadth of the therapeutic window. The data warrant further studies into the potential acute use of TZDs for ischemic stroke therapy in the general population.  相似文献   

5.

Aim

Aquaporin-4(AQP4) expression in the brain with relation to edema formation following focal cerebral ischemia was investigated. Studies have shown that brain edema is one of the significant factors in worsening stroke outcomes. While many mechanisms may aggravate brain injury, one such potential system may involve AQP4 up regulation in stroke patients that could result in increased edema formation. Post administration of melatonin following ischemic stroke reduces AQP4 mediated brain edema and confers neuroprotection.

Materials and methods

An in-silico approach was undertaken to confirm effective melatonin-AQP4 binding. Rats were treated with 5 mg/kg, i.p. melatonin or placebo at 30 min prior, 60 min post and 120 min post 60 min of middle cerebral artery occlusion (MCAO) followed by 24 h reperfusion. Rats were evaluated for battery of neurological and motor function tests just before sacrifice. Brains were harvested for infarct size estimation, water content measurement, biochemical analysis, apoptosis study and western blot experiments.

Key findings

Melatonin at 60 min post ischemia rendered neuroprotection as evident by reduction in cerebral infarct volume, improvement in motor and neurological deficit and reduction in brain edema. Furthermore, ischemia induced surge in levels of nitrite and malondialdehyde (MDA) were also found to be significantly reduced in ischemic brain regions in treated animals. Melatonin potentiated intrinsic antioxidant status, inhibited acid mediated rise in intracellular calcium levels, decreased apoptotic cell death and also markedly inhibited protein kinase C (PKC) influenced AQP4 expression in the cerebral cortex and dorsal striatum.

Significance

Melatonin confers neuroprotection by protein kinase C mediated AQP4 inhibition in ischemic stroke.  相似文献   

6.
High levels of iron, measured as serum ferritin, are associated to a worse outcome after stroke. However, it is not known whether ischemic damage might increase ferritin levels as an acute phase protein or whether iron overload affects stroke outcome. The objectives are to study the effect of stroke on serum ferritin and the contribution of iron overload to ischemic damage.Swiss mice were fed with a standard diet or with a diet supplemented with 2.5% carbonyl iron to produce iron overload. Mice were submitted to permanent (by ligature and by in situ thromboembolic models) or transient focal ischemia (by ligature for 1 or 3 h).Treatment with iron diet produced an increase in the basal levels of ferritin in all the groups. However, serum ferritin did not change after ischemia. Animals submitted to permanent ischemia had the same infarct volume in the groups studied. However, in mice submitted to transient ischemia followed by early (1 h) but not late reperfusion (3 h), iron overload increased ischemic damage and haemorrhagic transformation.Iron worsens ischemic damage induced by transient ischemia and early reperfusion. In addition, ferritin is a good indicator of body iron levels but not an acute phase protein after ischemia.  相似文献   

7.
Cardiac arrest results in significant mortality after initial resuscitation due in most cases to ischemia-reperfusion induced brain injury and to a lesser degree myocardial dysfunction. Nitrite has previously been shown to protect against reperfusion injury in animal models of focal cerebral and heart ischemia. Nitrite therapy after murine cardiac arrest improved 22 h survival through improvements in myocardial contractility. These improvements accompanied transient mitochondrial inhibition which reduced oxidative injury to the heart. Based on preliminary evidence that nitrite may also protect against ischemic brain injury, we sought to test this hypothesis in a rat model of asphyxia cardiac arrest with prolonged survival (7d). Cardiac arrest resulted in hippocampal CA1 delayed neuronal death well characterized in this and other cardiac arrest models. Nitrite therapy did not alter post-arrest hemodynamics but did result in significant (75%) increases in CA1 neuron survival. This was associated with increases in hippocampal nitrite and S-nitrosothiol levels but not cGMP shortly after therapy. Mitochondrial function 1h after resuscitation trended towards improvement with nitrite therapy. Based on promising preclinical data, the first ever phase I trial of nitrite infusions in human cardiac arrest survivors has been undertaken. We present preliminary data showing low dose nitrite infusion did not result in hypotension or cause methemoglobinemia. Nitrite thus appears safe and effective for clinical translation as a promising therapy against cardiac arrest mediated heart and brain injury.  相似文献   

8.

Aims

Transplantation of bone marrow mononuclear cells (BMMCs) exerts neuroprotection against cerebral ischemia. We examined the therapeutic timepoint of allogeneic BMMC transplantation in a rat model of focal cerebral ischemia, and determined the effects of repeated transplantation outside the therapeutic window.

Main methods

Male Sprague–Dawley rats were subjected to 90 minute focal cerebral ischemia, followed by intravenous administration of 1 × 107 allogeneic BMMCs or vehicle at 0, 3 or 6 h after reperfusion or 2 × 107 BMMCs 6 h after reperfusion. Other rats administered 1 × 107 BMMCs at 6 h after reperfusion received additional BMMC transplantation or vehicle 9 h after reperfusion. Infarct volumes, neurological deficit scores and immunohistochemistry were evaluated 24 or 72 h after reperfusion.

Key findings

Infarct volumes at 24 h were significantly decreased in transplantation rats at 0 and 3 h, but not at 6 h, after reperfusion, compared to vehicle-treatment. Even high dose BMMC transplantation at 6 h after reperfusion was ineffective. Repeated BMMC transplantation at 6 and 9 h after reperfusion reduced infarct volumes and significantly improved neurological deficit scores at 24 and 72 h. Immunohistochemistry showed repeated BMMC transplantation reduced ionized calcium-binding adapter molecule 1, 4-hydroxy-2-nonenal and 8-hydroxydeoxyguanosine expression at 24 and 72 h after reperfusion.

Significance

Intravenous allogeneic BMMCs were neuroprotective following transient focal cerebral ischemia, and the therapeutic time window of BMMC transplantation was > 3 h and < 6 h after reperfusion in this model. Repeated transplantation at 6 and 9 h after reperfusion suppressed inflammation and oxidative stress in ischemic brains, resulting in improved neuroprotection.  相似文献   

9.

Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.

  相似文献   

10.
Tissue ischemia and ischemia–reperfusion (I/R) remain sources of cell and tissue death. Inability to restore blood flow and limit reperfusion injury represents a challenge in surgical tissue repair and transplantation. Nitric oxide (NO) is a central regulator of blood flow, reperfusion signaling and angiogenesis. De novo NO synthesis requires oxygen and is limited in ischemic vascular territories. Nitrite (NO2?) has been discovered to convert to NO via heme-based reduction during hypoxia, providing a NO synthase independent and oxygen-independent NO source. Furthermore, blockade of the matrix protein thrombospondin-1 (TSP1) or its receptor CD47 has been shown to promote downstream NO signaling via soluble guanylate cyclase (sGC) and cGMP-dependant kinase. We hypothesized that nitrite would provide an ischemic NO source that could be potentiated by TSP1–CD47 blockade enhancing ischemic tissue survival, blood flow and angiogenesis. Both low dose nitrite and direct blockade of TSP1–CD47 interaction using antibodies or gene silencing increased acute blood flow and late tissue survival in ischemic full thickness flaps. Nitrite and TSP1 blockade both enhanced in vitro and in vivo angiogenic responses. The nitrite effect could be abolished by inhibition of sGC and cGMP signaling. Potential therapeutic synergy was tested in a more severe ischemic flap model. We found that combined therapy with nitrite and TSP1–CD47 blockade enhanced flap perfusion, survival and angiogenesis to a greater extent than either agent alone, providing approximately 100% flap survival. These data provide a new therapeutic paradigm for hypoxic NO signaling through enhanced cGMP mediated by TSP1–CD47 blockade and nitrite delivery.  相似文献   

11.
Aquaporin-4 (AQP4) plays a role in the generation of post-ischemic edema. Pharmacological modulation of AQP4 function may thus provide a novel therapeutic strategy for the treatment of stroke, tumor-associated edema, epilepsy, traumatic brain injury, and other disorders of the central nervous system (CNS) associated with altered brain water balance. Edaravone, a free radical scavenger, is used for the treatment of acute ischemic stroke (AIS) in Japan. In this study, edaravone significantly reduced the infarct area and improved the neurological deficit scores at 24 h after reperfusion in a rat transient focal ischemia model. Furthermore, edaravone markedly reduced AQP4 immunoreactivity and protein levels in the cerebral infarct area. In light of observations that edaravone specifically inhibited AQP4 in a rat transient focal ischemia model, we propose that edaravone might reduce cerebral edema through the inhibition of AQP4 expression following cerebral infarction.  相似文献   

12.
Cerebral ischemia or stroke, an acute neurological injury lacking an effective therapy, is the second leading cause of death globally. The unmet need in stroke research is to identify viable targets and to understand their interplay during the temporal evolution of ischemia/reperfusion (I/R) injury. Here we report a temporal signature of the ischemic hemisphere revealed by the isobaric tag for relative and absolute quantification (iTRAQ)-based 2D-LC-MS/MS strategy in an in vivo middle cerebral artery occlusion (MCAO) model of focal cerebral I/R injury. To recapitulate clinical stroke, two hours of MCAO was followed by 0, 4, and 24 h of reperfusion to capture ischemia with an acute and subacute durations of reperfusion injury. The subsequent iTRAQ experiment identified 2242 proteins from the ischemic hemisphere with <1.0% false discovery rate. Data mining revealed that (1) about 2.7% of detected proteins were temporally perturbed having an involvement in the energy metabolism (Pygb, Atp5b), glutamate excitotoxicity (Slc1a3, Glud1), neuro-inflammation (Tf, C3, Alb), and cerebral plasticity (Gfap, Vim, Gap43); (2) astrocytes participated actively in the neurometabolic coupling underlining the importance of a cerebro-protective rather than a neuro-protective approach; and (3) hyper-acute yet progressive opening of the blood brain barrier (BBB), accompanied by stimulation of an innate immune response and late activation of a regenerative response, which provides an extended therapeutic window for intervention. Several regulated proteins (Caskin1, Shank3, Kpnb1, Uchl1, Mtap6, Epb4.1l1, Apba1, and Ube1x) novel in the context of stroke were also discovered. In conclusion, our result supports a dynamic multitarget therapy rather than the traditional approach of a unilateral and sustained modulation of a single target to address the phasic regulation of an ischemic proteome.  相似文献   

13.
Nitric oxide (NO) is a potential regulator of ischemic vascular remodeling, and as such therapies augmenting its bioavailability may be useful for the treatment of ischemic tissue diseases. Here we examine the effect of administering the NO prodrug sodium nitrite on arteriogenesis activity during established tissue ischemia. Chronic hindlimb ischemia was induced by permanent unilateral femoral artery and vein ligation. Five days postligation; animals were randomized to control PBS or sodium nitrite (165 μg/kg) therapy twice daily. In situ vascular remodeling was measured longitudinally using SPY angiography and Microfil vascular casting. Delayed sodium nitrite therapy rapidly increased ischemic limb arterial vessel diameter and branching in a NO-dependent manner. SPY imaging angiography over time showed that nitrite therapy enhanced ischemic gracillis collateral vessel formation from the profunda femoris to the saphenous artery. Immunofluorescent staining of smooth muscle cell actin also confirmed that sodium nitrite therapy increased arteriogenesis in a NO-dependent manner. The NO prodrug sodium nitrite significantly increases arteriogenesis and reperfusion of established severe chronic tissue ischemia.  相似文献   

14.
The neuronal damage following cerebral ischemia is a serious risk to stroke patients. The aim of this study was to investigate the neuroprotective effects of alkaloid extract from Leonurus heterophyllus (LHAE) on cerebral ischemic injury. After 24 h of reperfusion following ischemia for 2 h induced by middle cerebral artery occlusion (MCAO), some rats were intraperitoneally administered different doses of LHAE (3.6, 7.2, 14.4 mg/kg, respectively). Neurological examination was measured in all animals. Infarct volume, myeloperoxidase (MPO) activity, levels of nitrate/nitrite metabolite (NO) and apoptosis ratio of nerve fiber in brain were determined. The results showed that LHAE at 7.2 mg/kg or 14.4 mg/kg exerted significantly decreasing neurological deficit scores and reducing the infarct volume on rats with focal cerebral ischemic injury (p < 0.05). At those dose, the MPO content were significantly decreased in ischemic brain as compared with model group (p < 0.05). LHAE at 14.4 mg/kg significantly decreased the NO level compared with the model group (p < 0.05). In addition, LHAE significantly decreased the apoptosis ratio of nerve fiber compared with the model group (p < 0.05). This study suggests that LHAE may be used for treatment of ischemic stroke as a neuroprotective agent. Further studies are warranted to assess the efficacy and safety of LHAE in patients.  相似文献   

15.
Cerium oxide nanoparticles (nanoceria) are widely used as catalysts in industrial applications because of their potent free radical-scavenging properties. Given that free radicals play a prominent role in the pathology of many neurological diseases, we explored the use of nanoceria as a potential therapeutic agent for stroke. Using a mouse hippocampal brain slice model of cerebral ischemia, we show here that ceria nanoparticles reduce ischemic cell death by approximately 50%. The neuroprotective effects of nanoceria were due to a modest reduction in reactive oxygen species, in general, and ~ 15% reductions in the concentrations of superoxide (O2•−) and nitric oxide, specifically. Moreover, treatment with nanoceria markedly decreased (~ 70% reduction) the levels of ischemia-induced 3-nitrotyrosine, a modification to tyrosine residues in proteins induced by the peroxynitrite radical. These findings suggest that scavenging of peroxynitrite may be an important mechanism by which cerium oxide nanoparticles mitigate ischemic brain injury. Peroxynitrite plays a pivotal role in the dissemination of oxidative injury in biological tissues. Therefore, nanoceria may be useful as a therapeutic intervention to reduce oxidative and nitrosative damage after a stroke.  相似文献   

16.

Aims

Pre-treatment with statins is known to ameliorate ischemic brain damage after experimental stroke, and is independent of cholesterol levels. We undertook pre- vs post-ischemic treatment with atorvastatin after focal cerebral ischemia in rats.

Main methods

Male Sprague–Dawley rats underwent transient 90-min middle cerebral artery occlusion (MCAO). Atorvastatin (20 mg/kg/day) or vehicle was administered orally. Rats were divided into vehicle-treated, atorvastatin pre-treatment, atorvastatin post-treatment, and atorvastatin continuous-treatment groups. In the pre-treatment, rats were given atorvastatin or vehicle for 7 days before MCAO. In the post-treatment, rats received atorvastatin or vehicle for 7 days after MCAO. Measurement of infarct volume, as well as neurological and immunohistochemical assessments, were done 24 h and 7 days after reperfusion.

Key findings

Each atorvastatin-treated group demonstrated significant reductions in infarct and edema volumes compared with the vehicle-treated group 24 h after reperfusion. Seven days after reperfusion, infarct volumes in the post-treatment group and continuous-treatment group (but not the pre-treatment group) were significantly smaller than in the vehicle-treated group. Only the continuous-treatment group had significantly improved neurological scores 7 days after reperfusion compared with the vehicle group. Post-treatment and continuous-treatment groups had significantly decreased lipid peroxidation, oxidative DNA damage, microglial activation, expression of tumor necrosis factor-alpha, and neuronal damage in the cortical ischemic boundary area after 7 days of reperfusion.

Significance

These results suggest that continuous oral administration (avoiding withdrawal) with statins after stroke may reduce the extent of post-ischemic brain damage and improve neurological outcome by inhibiting oxidative stress and inflammatory responses.  相似文献   

17.
Ischemic stroke is the second leading cause of death worldwide. Only one moderately effective therapy exists, albeit with contraindications that exclude 90% of the patients. This medical need contrasts with a high failure rate of more than 1,000 pre-clinical drug candidates for stroke therapies. Thus, there is a need for translatable mechanisms of neuroprotection and more rigid thresholds of relevance in pre-clinical stroke models. One such candidate mechanism is oxidative stress. However, antioxidant approaches have failed in clinical trials, and the significant sources of oxidative stress in stroke are unknown. We here identify NADPH oxidase type 4 (NOX4) as a major source of oxidative stress and an effective therapeutic target in acute stroke. Upon ischemia, NOX4 was induced in human and mouse brain. Mice deficient in NOX4 (Nox4 −/−) of either sex, but not those deficient for NOX1 or NOX2, were largely protected from oxidative stress, blood-brain-barrier leakage, and neuronal apoptosis, after both transient and permanent cerebral ischemia. This effect was independent of age, as elderly mice were equally protected. Restoration of oxidative stress reversed the stroke-protective phenotype in Nox4 −/− mice. Application of the only validated low-molecular-weight pharmacological NADPH oxidase inhibitor, VAS2870, several hours after ischemia was as protective as deleting NOX4. The extent of neuroprotection was exceptional, resulting in significantly improved long-term neurological functions and reduced mortality. NOX4 therefore represents a major source of oxidative stress and novel class of drug target for stroke therapy.  相似文献   

18.
Administration of vascular endothelial growth factor (VEGF) has been shown to increase cerebral blood flow and reduce neurological damage after experimental ischemic brain injury. The purpose of this study was to examine the optimal dose and time window for the neuroprotective effect of VEGF when administrated after focal ischemia/reperfusion injury in rabbits. Focal cerebral ischemia/reperfusion was induced by the middle cerebral artery occlusion (MCAO) method. In a dose response experiment, low (1.25 ng/μL), middle (2.5 ng/μL) and high (5.0 ng/μL) doses of VEGF were administered 2h after MCAO by the route of perifocal region. The VEGF at a dose of middle (2.5 ng/μL) displayed excellent effects on neuroprotective efficacy for focal cerebral ischemia/reperfusion injury. In another experiment, 2.5 ng/μL VEGF was administered at times varying from 2 to 8h after MCAO. Infarct volume, water content and neurological deficits were significantly reduced when VEGF was given at 2 and 3h after injury. The protective effect was less when the same dose was given at the later times. Thus, the present findings indicated that VEGF reduced ischemic neuronal danger with a therapeutic time window within the first 3h of transient MCAO and may be useful in the treatment of acute ischemic stroke in humans.  相似文献   

19.

Background and Purpose

Thrombolytic therapy rate for acute ischemic stroke remains low, and improving public awareness of thrombolytic therapy may be helpful to reduce delay and increase chances of thrombolytic therapy. Our purpose was to survey the level of knowledge about thrombolytic therapy for acute ischemic stroke among community residents in Yuzhong district, Chongqing, China.

Methods

In 2011, a population-based face-to-face interview survey was conducted in Yuzhong district, Chongqing. A total of 1500 potential participants aged ≥18 years old were selected using a multi-stage sampling method.

Results

A total of 1101 participants completed the survey. Only 23.3% (95% CI = 20.8 to 25.8) were aware of thrombolytic therapy for acute ischemic stroke, of whom 59.9% (95% CI = 53.9 to 65.9) knew the time window. Awareness of thrombolytic therapy was higher among young people, those with higher levels of education and household income, those with health insurance, and those who knew all 5 stroke warning signs, while awareness of the time window was higher among those aged 75 years or older. Multivariate logistic regression analysis showed that awareness of thrombolytic therapy was independently associated with age, education level, health insurance and knowledge of stroke warning signs (P<0.05).

Conclusions

In this population-based survey the community residents have poor awareness of thrombolytic therapy for acute ischemic stroke.  相似文献   

20.
Liu Z  Liu Q  Cai H  Xu C  Liu G  Li Z 《Regulatory peptides》2011,171(1-3):19-25
Cerebral ischemia is one of the diseases that most compromise the human species. Therapeutic recovery of blood-brain barrier (BBB) disruption represents a novel promising approach to reduce brain injury after stroke. To determine the effects of calcitonin gene-related peptide (CGRP) on the BBB participate in stroke progression, rat cerebral ischemia reperfusion injury was induced by a 2-hour left transient middle cerebral artery occlusion (MCAO) using an intraluminal filament, followed by 46h of reperfusion. CGRP (1μg/ml) at the dose of 3μg/kg (i.p.) was administered at the beginning of reperfusion. Subsequently, 48h after MCAO, arterial blood pressure, infarct volume, water content, BBB permeability, BBB ultrastructure, levels of aquaporin-4 (AQP4) and its mRNA were evaluated. CGRP could reduce arterial blood pressure (P<0.001), infarct volume (P<0.05), cerebral edema (P<0.01), BBB permeability (P<0.05), AQP4 mRNA expression (P<0.05) and AQP4 protein expression (P<0.01). Furthermore, CGRP treatment improved ultrastructural damage of capillary endothelium cells and decreased the loss of the tight junction observed by transmission electronic microscopy (TEM) after 46h of reperfusion. Our findings show that CGRP significantly reduced postischemic increase of brain edema with a 2-hour therapeutic window in the transient model of focal cerebral ischemia. Moreover, it seems that at least part of the anti-edematous effects of CGRP is due to decrease of BBB disruption by improving ultrastructural damage of capillary endothelium cells, enhancing basal membrane, and inhibiting AQP4 and its mRNA over-expression. The data of the present study provide a new possible approach for acute stroke therapy by administration of CGRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号