首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

BTG3 (B-cell translocation gene 3) has been identified as a tumor suppressor and hypermethylation contributes to its down-regulation in some tumors, but its role in hepatocellular carcinoma (HCC) remain unknown. This study aimed to detect the expression and methylation status of BTG3 in HCC cell lines or tissues, and determine its function in HCC progression.

Methodology

The expression of BTG3 was detected in HCC cell lines and HCC tissue by real-time RT-PCR, Western blot or immunohistochemistry. The promoter methylation status of BTG3 was measured by using methylation-specific PCR in HCC cell lines. A series of assays were performed to evaluate the effect of BTG3 on proliferation, invasion and cell cycle transition in vitro.

Results

BTG3 expression was lower in HCC cell lines than in hepatocyte cell line LO2 (P<0.05). BTG3 was also down-regulated in HCC tissues. Its expression was positively correlated with differentiation and distant metastasis (P<0.05). Patients with lower BTG3 expression had shorter overall survival time (P=0.029). DNA methylation directed repression of BTG3 mRNA expression in HCC cell lines. BTG3 suppressed proliferation, invasion and induces G1/S cycle arrest of HCC cells in vitro.

Conclusion

Down-regulation of BTG3 due to the promoter hypermethylation is closely associated with proliferation, invasion and cell cycle arrest of HCC cells. It may be a novel prognostic biomarker for HCC patients.  相似文献   

2.
Recent finding has shown that LIMS2 (also known as PINCH2) functions as a natural regulator of the LIMS1-ILK-parvin complex formation and is associated with cell spreading and migration via integrins at focal adhesions. Here, we report for the first time the epigenetic silencing of LIMS2 in gastric tumors. Downregulation of LIMS2 was detected in 91% (10 of 11) of gastric cancer cell lines by real-time quantitative RT-PCR and 80% (8 of 10) of the LIMS2-downregulated cell lines were associated with CpG island hypermethylation at a 5'-upstream region of LIMS2. Furthermore, LIMS2 was restored in its non-expressing cell lines after treatment with 5-Aza-dC and/or trichostatin A. Loss of expression of LIMS2 was also detected in 53% (51 of 96) of primary gastric tumors. This decrease in expression level significantly correlated with an increase of the CpG island hypermethylation. In addition, the methylation status in any normal-appearing gastric tissues was gradually increased in an age-dependent manner, suggesting that the positive methylation in normal-appearing gastric mucosa can be due to 'field cancerization effect' as an early event in gastric carcinogenesis. Moreover, the transient transfection of LIMS2-siRNA significantly stimulated cell migration in gastric cancer cells but had no effects on cell growth. These results suggest that the frequent inactivation of LIMS2 by epigenetic alteration in gastric cancer may be important in tumor progression events, such as invasion and metastasis. Thus, LIMS2 may be useful as a molecular biomarker and a therapeutic target by increasing its expression and activity in gastric cancer.  相似文献   

3.
4.
The Na,K-ATPase or sodium pump carries out the coupled extrusion of Na+ and uptake of K+ across the plasma membranes of cells of most higher eukaryotes. We have shown earlier that Na,K-ATPase-β1 (NaK-β) protein levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. The mechanism(s) regulating the expression of NaK-β in tumor tissues has yet to be explored. We hypothesized that DNA methylation plays a role in silencing the NaK-β gene (ATP1B1) expression in kidney cancers. In this study, to the best of our knowledge we provide the first evidence that ATP1B1 is epigenetically silenced by promoter methylation in both renal cell carcinoma (RCC) patients’ tissues and cell lines. We also show that knockdown of the von Hippel-Lindau (VHL) tumor suppressor gene in RCC cell lines results in enhanced ATP1B1 promoter AT hypermethylation, which is accompanied by reduced expression of NaK-β. Furthermore, treatment with 5-Aza-2′-deoxycytidine rescued the expression of ATP1B1 mRNA as well as NaK-β protein in these cells. These data demonstrate that promoter hypermethylation is associated with reduced NaK-β expression, which might contribute to RCC initiation and/or disease progression.  相似文献   

5.
As one of major epigenetic changes responsible for tumor suppressor gene inactivation in the development of cancer, promoter hypermethylation was proposed as a marker to define novel tumor suppressor genes. In the current study we identified ZIC1 (Zic family member 1, odd-paired Drosophila homolog) as a novel tumor suppressor gene silenced through promoter hypermethylation in gastric cancer, the second leading cause of cancer death worldwide. In all of gastric cancer cells lines examined, ZIC1 expression was downregulated and such downregulation was accompanied with the hypermethylation of ZIC1 promoter. Demethylation treatment with 5-aza-2′-deoxycytidine (Aza) reversed ZIC1 downregulation, highlighting the importance of promoter methylation to ZIC1 downregulation in gastric cancer cells. Notably, ZIC1 expression was significantly downregulated in primary gastric carcinoma tissues in comparison with non-tumor adjacent gastric tissues (p < 0.01). Accordingly, promoter methylation of ZIC1 was frequently detected in primary gastric carcinoma tissues (94.6%, 35/37) but not normal gastric tissues, indicating that promoter hypermethylation mediated ZIC1 downregulation may play an important role in gastric carcinogenesis. Indeed, ectopic expression of ZIC1 led to the growth inhibition of gastric cancer cells through the induction of S-phase cell cycle arrest (p < 0.01). Our results revealed ZIC1 as a novel candidate tumor suppressor gene downregulated through promoter hypermethylation in gastric cancer.  相似文献   

6.
7.
Background: To evaluate the promoter methylation status of RECK gene and mRNA expression in patients with hepatocellular carcinoma (HCC).Methods: We analyzed RECK methylation by MSP, and RECK mRNA by real-time PCR in 74 HCC. The liver cell lines (7721, Chang and Hep-G2) were treated with 5-Aza-CdR and TSA.Results: RECK mRNA were lower in HCC tissues (Mean -∆Ct = -3.29) than that in Non-Hcc tissues (Mean -∆Ct = -2.42). Expression of RECK was elevated in only 24 (32.43%) of the 74 HCC patients but decreased (-∆∆Ct<0) in 50 (67.57%) of the patients. RECK promoter was hypermethylated in 55.4% (41/74) of HCCs, and in only 17.6% (13/74) of Non-Hcc samples. RECK mRNA were lower in HCC patients with hypermethylation (∆MI>=0.5) (Mean -∆∆Ct = -1.75) than those with demethylation (∆MI<0.5) (Mean -∆∆Ct = 0.05), and there is a decreased tendency for RECK mRNA in HCC patients with promoter hypermethylation (p = 0.002). There was a significantly correlation found between RECK mRNA and poor survival after surgery. After treated by 5-Aza-CdR and TSA, we found that RECK mRNA induced different changes in 7721, Chang and Hep-G2 cells. And RECK demethylation also induced by epigenetic inhibitors.Conclusion: The results suggested that the hypermethylation may lead to promoter silencing of RECK mRNA and associated with poor survival in HCC.  相似文献   

8.
The polo-like kinase (PLKs) family, consisting of five known members, are key regulators of important cell cycle processes, which include mitotic entry, centrosome duplication, spindle assembly, and cytokinesis. The PLKs have been implicated in a variety of cancers, such as hepatocellular carcinoma (HCC), with PLK1 typically overexpressed and PLKs 2–5 often downregulated. Altered expression of the PLKs in malignancy is often correlated with aberrant promoter methylation. Epigenetic marks are dynamic and can be modified in response to external environmental stimuli. The aim of our study was to determine if oxidative stress, a common feature of solid tumours, would induce changes to the promoter methylation of the PLKs resulting in changes in expression. We examined the promoter methylation status via MSP and subsequent expression levels of the PLK family members under exposure to hypoxic conditions or reactive oxygen species (ROS). Interestingly, murine embryonic fibroblasts exposed to hypoxia and ROS displayed significant hypermethylation of Plk1 and Plk4 promoter regions post treatment. Corresponding proteins were also depleted by 40% after treatment. We also examined the HCC-derived cell lines HepG2 and Hep3B and found that for PLK1 and PLK4, the increase in hypermethylation was correlated with the presence of functional p53. In p53 wild-type cells, HepG2, both PLK1 and PLK4 were repressed with treatment, while in the p53 null cell line, Hep3B, PLK4 protein was elevated in the presence of hypoxia and ROS. This was also the case for ROS-treated, p53 null, osteosarcoma cells, Saos-2, where the PLK4 promoter became hypomethylated and protein levels were elevated. Our data supports a model in which the PLKs are susceptible to epigenetic changes induced by microenvironmental cues and these modifications may be p53-dependent. This has important implications in HCC and other cancers, where epigenetic alterations of the PLKs could contribute to tumourigenesis and disease progression.  相似文献   

9.
Gastric cancer remains the second leading cause of cancer-related death in the world. H. pylori infection, a major risk factor for gastric cancer, generates high levels of reactive oxygen species (ROS). Glutathione peroxidase 3 (GPX3), a plasma GPX member and a major scavenger of ROS, catalyzes the reduction of hydrogen peroxide and lipid peroxides by reduced glutathione. To study the expression and gene regulation of GPX3, we examined GPX3 gene expression in 9 gastric cancer cell lines, 108 primary gastric cancer samples and 45 normal gastric mucosa adjacent to cancers using quantitative real-time RT-PCR. Downregulation or silencing of GPX3 was detected in 8 of 9 cancer cell lines, 83% (90/108) gastric cancers samples, as compared to non-tumor adjacent normal gastric samples (P<0.0001). Examination of GPX3 promoter demonstrated DNA hypermethylation (≥10% methylation level determined by Bisulfite Pyrosequencing) in 6 of 9 cancer cell lines and 60% of gastric cancer samples (P = 0.007). We also detected a significant loss of DNA copy number of GPX3 in gastric cancers (P<0.001). Treatment of SNU1 and MKN28 cells with 5-Aza-2′ Deoxycytidine restored the GPX3 gene expression with a significant demethylation of GPX3 promoter. The downregulation of GPX3 expression and GPX3 promoter hypermethylation were significantly associated with gastric cancer lymph node metastasis (P = 0.018 and P = 0.029, respectively). We also observed downregulation, DNA copy number losses, and promoter hypermethylation of GPX3 in approximately one-third of tumor-adjacent normal gastric tissue samples, suggesting the presence of a field defect in areas near tumor samples. Reconstitution of GPX3 in AGS cells reduced the capacity of cell migration, as measured by scratch wound healing assay. Taken together, the dysfunction of GPX3 in gastric cancer is mediated by genetic and epigenetic alterations, suggesting impairment of mechanisms that regulate ROS and its possible involvement in gastric tumorigenesis and metastasis.  相似文献   

10.
MicroRNAs (miRNAs) have been shown to play important roles in carcinogenesis. However, their underlying mechanisms of action in hepatocellular carcinoma (HCC) are poorly understood. Recent evidence suggests that epigenetic silencing of miRNAs through tumor suppression by CpG island hypermethylation may be a common hallmark of human tumors. Here, we demonstrated that miR-941 was significantly down-regulated in HCC tissues and cell lines and was generally hypermethylated in HCC. The overexpression of miR-941 suppressed in vitro cell proliferation, migration, and invasion and inhibited the metastasis of HCC cells in vivo. Furthermore, the histone demethylase KDM6B (lysine (K)-specific demethylase 6B) was identified as a direct target of miR-941 and was negatively regulated by miR-941. The ectopic expression of KDM6B abrogated the phenotypic changes induced by miR-941 in HCC cells. We demonstrated that miR-941 and KDM6B regulated the epithelial-mesenchymal transition process and affected cell migratory/invasive properties.  相似文献   

11.
12.
13.
14.
15.
16.
Stable epigenetic silencing of p16INK4a is a common event in hepatocellular carcinoma (HCC) cells, which is associated with abnormal cell proliferation and liberation from cell cycle arrest. Understanding the early epigenetic events in silencing p16INK4a expression may illuminate a prognostic strategy to block HCC development. Toward this end, we created a reprogram cell model by the fusion mouse HCC cells with mouse embryonic stem cells, in which the ES-Hepa hybrids forfeited HCC cell characteristics along with reactivation of the silenced p16INK4a. HCC characteristics, in terms of gene expression pattern and tumorigenic potential, was restored upon induced differentiation of these reprogrammed ES-Hepa hybrids. The histone methylation pattern relative to p16INK4a silencing during differentiation of the ES-Hepa hybrids was analyzed. H3K27 trimethylation at the p16INK4a promoter region, occurring in the early onset of p16INK4a silencing, was followed by H3K9 dimethylation at later stages. During the induced differentiation of the ES-Hepa hybrids, H3K4 di- and trimethylations were maintained at high levels during the silencing of p16INK4a, strongly suggesting that H3K4 methylation events did not cause the silencing of p16INK4a. Our results suggested that the enrichment of H3K27 trimethylation, independent of H3K9 dimethylation, trimethylation, and DNA methylation, was an early event in the silencing of p16INK4a during the tumor development. This unique chromatin pattern may be a heritable marker of epigenetic regulation for p16INK4a silencing during the developmental process of hepatocellular carcinogenesis.  相似文献   

17.
miR-122, a hepato-specific microRNA (miRNA), is frequently down-regulated in human hepatocellular carcinoma (HCC). In an effort to identify novel miR-122 targets, we performed an in silico analysis and detected a putative binding site in the 3′-untranslated region (3′-UTR) of Bcl-w, an anti-apoptotic Bcl-2 family member. In the HCC-derived cell lines, Hep3B and HepG2, we confirmed that miR-122 modulates Bcl-w expression by directly targeting binding site within the 3′-UTR. The cellular mRNA and protein levels of Bcl-w were repressed by elevated levels of miR-122, which subsequently led to reduction of cell viability and activation of caspase-3. Thus, Bcl-w is a direct target of miR-122 that functions as an endogenous apoptosis regulator in these HCC-derived cell lines.  相似文献   

18.
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide and is caused by the accumulation of genetic and epigenetic alterations in regulatory genes. In this study, we used methylight to detect the methylation status of the RASSF1A promoter in 87 paired HCC samples and analysed the relationship between methylation status and clinicopathological parameters, including prognosis after surgery. We found that the methylation level of the RASSF1A promoter in HCC tissues was significantly higher than that in the corresponding non-tumorous tissues (< 0.0001). Furthermore, the methylation level of the RASSF1A gene promoter in HCC samples was higher in patients with a tumor size ?6 cm (= 0.0149) and in patients younger than 50 years old (= 0.0175). However, hypermethylation of the RASSF1A promoter in HCC tissues did not affect the overall survival of patients (= 0.611). Thus, RASSF1A promoter hypermethylation may not be a useful biomarker for the prognosis of HCC.  相似文献   

19.
《Epigenetics》2013,8(4):265-269
Recently a mouse model of T/natural killer acute lymphoblastic leukemia was used to assess global promoter methylation across the mouse genome using the restriction landmark genomic scanning technique. One of the methylated mouse genes identified in this way was Slit2. There are three mammalian SLIT genes (SLIT1, SLIT2, SLIT3), that belong to a highly conserved family of axon guidance molecules. We have previously demonstrated that SLIT2 is frequently inactivated in lung, breast, colorectal and glioma tumors by hypermethylation of a CpG island in its promoter region, whilst inactivating somatic mutations are rare. Furthermore, we demonstrated that SLIT2 acts as a tumor suppressor gene in breast and colorectal cancer cells. In this report we determined the methylation status of the SLIT2 gene in leukemias (CLL and ALL). SLIT2 was methylated in all 10 leukemia cell lines analyzed (8 completely and 2 partially methylated). SLIT2 expression was restored after treating ALL lines with 5-aza-2dC. In primary ALL and CLL samples, SLIT2 was also frequently methylated, 58% (30/52) B-ALL; 83% (10/12) T-ALL and in 80% (24/30) CLL. Whilst DNA from peripheral blood and bone marrow from healthy control samples showed no SLIT2 methylation. Methylation results in leukemia cell lines and ALL and CLL primary samples were confirmed by direct sequencing of bisulfite modified DNA. Our results demonstrate that methylation of the SLIT2 5’ CpG island is conserved between mice and humans, and therefore is likely to be of functional importance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号