首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Investigations were conducted comparing the efficiency of adenine nucleotide extraction from bacteria, unicellular algae, invertebrates (copepods, isopods and polychaetes), and beach sand using boiling buffers and cold acid extraction procedures. Cellular levels of ATP, ADP, and AMP obtained by these procedures were used to calculate the adenylate energy charge ratio (ECA = [ATP] + 12 [ADP]/[ATP] + [ADP] + [AMP]). Although both extraction procedures efficiently extract ATP from unicellular micro-organisms, the results with multicells and beach sand indicate that the cold acid procedure preserves a greater percentage of the total adenine nucleotides ([AT] = [ATP] + [ADP] + [AMP]) in the form of ATP, resulting in higher energy charge ratios. There were relatively large losses of ATP when multicellular organisms were extracted in boiling buffers. These data suggest that ATP hydrolysis may be important in certain fluid-solid mixtures, and also adds experimental support to the thermal gradient hypothesis.The C/ATP ratios calculated from these data indicate that multicellular organisms have C/ATP ratios < 100, as compared with the 250 ratio commonly found in micro-organisms. These results are discussed in terms of the proportion of structural (non-living) carbon vs protoplasm (living) carbon within each of these groups of organisms, as well as the relative intracellular levels of non-adenine nucleotide triphosphates. These differences in the C/ATP ratios must be considered whenever ATP measurements are used for biomass determinations.  相似文献   

2.
Glucuronokinase from Lilium longiflorum pollen was purified 30- to 40- fold on a blue dextran-Sepharose column. Substrate analogs were tested for inhibitory effects, and nucleotide substrate specificity of the enzyme was determined. Nine nucleotides were tested, and all were inhibitory when the substrate was ATP. ADP was competitive with ATP and had a Ki value of 0.23 mm. None of the other nucleotide triphosphates could effectively substitute for ATP as a nucleotide substrate. Ten mm dATP and ITP reacted only 3% as rapidly as 10 mm ATP, while the rates for 10 mm GTP, CTP, UTP, and TTP were less than 1%. The glucuronic acid analogs, methyl α-glucuronoside, methyl β-glucuronoside, β-glucuronic acid-1-phosphate, and 4-O-methylglucuronic acid were tested as possible enzyme inhibitors. The three methyl derivatives showed little or no inhibition. The β-glucuronic acid-1-phosphate was inhibitory, with 50% inhibition obtained at 1 to 3 mm depending on the concentration of the glucuronic acid. It is concluded that the glucuronic acid-binding site on the enzyme is highly selective.  相似文献   

3.
Summary The viviparous seaperch,Embiotoca lateralis, has unique fetal and adult hemoglobins. Stripped fetal hemoglobin has a higher oxygen affinity than stripped adult hemoglobin at pH 6.5–7.1. The oxygen affinities of both adult and fetal hemoglobins are lowered allosterically by ATP at pH 7.1. Both fetal and adult seaperch erythrocytes include approximately 82% ATP and 18% GTP of the total nucleotide triphosphates (NTP) with a trace of AMP. No 2,3-diphosphoglycerate or inositol polyphosphate was detected. Mid- and late-gestation erythrocytes contain less NTP/mole hemoglobin tetramer than do adult cells. The effective NTP concentration in adult cells is higher than that of the fetal erythrocytes even when the intracellular concentration of Mg2+, which complexes with NTP, is accounted for. The difference in adult and fetal intraerythrocytic NTP concentration should enhance transfer of oxygen from maternal to fetal blood. Thus, the teleostEmbiotoca lateralis may employ a dual mechanism in maternal-fetal oxygen transfer. A difference in fetal and maternal hemoglobin structure and oxygen affinities is enhanced by a difference in their respective intraerythrocytic organic phosphate concentrations.  相似文献   

4.
The genome of Chlamydia trachomatis, one of the most prominent human pathogens, contains two structural genes coding for proteins, herein called Npt1Ct and Npt2Ct (nucleoside phosphate transporters 1 and 2 of C. trachomatis), exhibiting 68 and 61% similarity, respectively, to the ATP/ADP transporter from the intracellular bacterium Rickettsia prowazekii at the deduced amino acid level. Hydropathy analysis and sequence alignments suggested that both proteins have 12 transmembrane domains. The putative transporters were expressed as histidine-tagged proteins in Escherichia coli to study their biochemical properties. His10-Npt1Ct catalyzed ATP and ADP transport in an exchange mode. The apparent Km values were 48 (ATP) and 39 (ADP) μM. ATP and ADP transport was specific since AMP, GTP, CTP, UTP, dATP, dCTP, dGTP, and dTTP did not inhibit uptake. In contrast, His10-Npt2Ct transported all four ribonucleoside triphosphates with apparent Km values of 31 μM (GTP), 302 μM (UTP), 528 μM (CTP), and 1,158 μM (ATP). Ribonucleoside di- and monophosphates and deoxyribonucleotides were not substrates. The protonophore m-chlorocarbonylcyanide phenylhydrazone abolished uptake of all nucleoside triphosphates by Npt2Ct. This observation indicated that His10-Npt2Ct acts as a nucleosidetriphosphate/H+ symporter energized by the proton motive force across the Escherichia coli cytoplasmic membrane. We conclude that Npt1Ct provides chlamydiae with energy whereas Npt2Ct catalyzes the net uptake of ribonucleoside triphosphates required for anabolic reactions.  相似文献   

5.
Extensive stalk elongation in Skl mutants of Caulobacter crescentus occurs when they are grown in complete medium. This stalk elongation is less pronounced in synthetic medium with glucose as the sole carbon source than in complex peptone yeast extract medium. Addition of exogenous nucleoside triphosphates (adenosine triphosphate [ATP], guanosine triphosphate [GTP], cytidine triphosphate, and uridine triphosphate) inhibits stalk elongation of the Skl mutants, whereas cyclic guanosine 3',5'-monophosphate (GMP) stimulates stalk elongation in the Skl strains grown in synthetic glucose medium. Cyclic GMP also produces stalk elongation in wild-type C. crescentus and concurrently produces a cell division defect resulting in cellular filament formation. Under conditions tested, cyclic adenosine 3',5'-monophosphate and dibutyryl cyclic adenosine monophosphate did not enhance stalk elongation. Endogenous ATP and GTP levels in the mutants are significantly lower than corresponding nucleotide concentrations of the parent wild-type strains. Control of syntheses resulting in stalk formation in C. crescentus appears to be related to intracellular concentrations of nucleotides, with cyclic GMP as a prominent candidate for an important regulatory role in this aspect of morphogenesis.  相似文献   

6.
Nucleotide binding and phosphorylation in microtubule assembly in vitro.   总被引:4,自引:0,他引:4  
Two non-hydrolyzable analogs of GTP, guanylyl-β,γ-methylene diphosphonate and guanylyl imidodiphosphate, have been found to induce rapid and efficient microtubule assembly in vitro by binding at the exchangeable site (E-site) on tubulin. Characterization of microtubule polymerization by several criteria, including polymerization kinetics, nucleotide binding to depolymerized and polymerized microtubules, and microtubule stability, reveals strong similarities between microtubule assembly induced by GTP and non-hydrolyzable GTP analogs. Nucleoside triphosphates which bind weakly or not at all to tubulin, such as ATP, UTP and CTP, are shown to induce microtubule assembly by means of a nucleoside diphosphate kinase (NDP-kinase, EC 2.7.4.6.) activity which is not intrinsic to tubulin. The NDP-kinase mediates microtubule polymerization by phosphorylating tubulin-bound GDP in situ at the E-site. Although hydrolysis of exchangeably bound GTP occurs, it is found to be uncoupled from the polymerization reaction. The non-exchangeable nucleotide binding site on tubulin (N-site) is not directly involved in microtubule assembly in vitro. The N-site is shown to contain almost exclusively GTP which is not hydrolyzed during microtubule assembly. A scheme is presented in which GTP acts as an allosteric effector at the E-site during microtubule assembly in vitro.  相似文献   

7.
Escherichia coli cells permeabilized by treatment with low concentrations of toluene contain an adenylyl cyclase activity that can be stimulated 3.6-7.6-fold by GTP. The stimulatory effect of GTP is maximal at concentrations of the nucleotide in the physiological range (above 0.7 mM). Studies of the dependence of velocity on substrate (ATP) concentration indicate that the velocity vs. substrate plots are sigmoid in the absence of GTP but hyperbolic in the presence of GTP, suggesting an allosteric regulatory site that can be occupied by either ATP or GTP. Replacement of ATP by AMPPNP as substrate results in velocity vs. substrate plots that are hyperbolic in the absence or presence of GTP, although GTP increases the Vmax by a factor of 2.2; these findings indicate that AMPPNP specifically occupies the substrate site and GTP exclusively occupies the regulatory site. A test of the capacity of other guanine nucleotides to stimulate adenylyl cyclase activity showed that 2'-deoxy-GTP was almost as effective as GTP, but that GDP, GMP, ppGpp, and 3',5'-cGMP were not stimulatory effectors; GTP-gamma-S and GMPPNP stimulated adenylyl cyclase activity but to a lesser degree than did GTP. In addition to the previous indication that ATP can occupy the regulatory site on adenylyl cyclase, it was found that CTP and UTP were potent stimulators. Thus, all the naturally occurring RNA precursor nucleoside triphosphates are capable of stimulating adenylyl cyclase activity. In contrast, PPPi inhibits adenylyl cyclase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
In the terminal stages of exocytosis from permeabilised mast cells, ATP has a number of modulatory actions, although its presence (and by implication, phosphorylation) is not obligatory for secretion to occur. These effects include (1) the enhancement of the sensitivity to both of the essential effectors (Ca2+ and guanine nucleotide); (2) the maintenance of the responsiveness of permeabilised cells; (3) restoration of responsiveness to cells rendered refractory by previous permeabilisation, and (4) induction of delays in the onset of exocytosis from permeabilised cells. We define the modulatory reactions induced by ATP by characterising their specificity to other potential phosphorylating nucleotides and their requirement for Mg2+. GTP and AppNHp are without effect in any of the modulatory actions. ATP, ATP-gamma-S, ITP, XTP, CTP and UTP all appear to support an enhancement of the sensitivity to GTP-gamma-S when applied immediately at the time of permeabilisation. However, the non-adenine nucleoside triphosphates appear to mediate their effect by transphosphorylation to ADP, and therefore the active species appears to be ATP. Only ATP is capable of maintaining and restoring responsiveness (2 and 3 above). Only ATP and ATP-gamma-S induce onset delays and do so moreover in the absence (less than 10(-8) M) of Mg2+. We conclude that three of the modulatory effects (1, 2 and 3 above) which all express a requirement for Mg2+, and can be prevented by inhibitors of protein kinase C are likely to result from phosphorylation reactions. The induction of delays by ATP is unlikely to incur phosphorylation.  相似文献   

9.
Escherichia coli Lon, also known as protease La, is a serine protease that is activated by ATP and other purine or pyrimidine triphosphates. In this study, we examined the catalytic efficiency of peptide cleavage as well as intrinsic and peptide-stimulated nucleotide hydrolysis in the presence of hydrolyzable nucleoside triphosphates ATP, CTP, UTP, and GTP. We observed that the k(cat) of peptide cleavage decreases with the reduction in the nucleotide binding affinity of Lon in the following order: ATP > CTP > GTP approximately UTP. Compared to those of the other hydrolyzable nucleotide triphosphates, the ATPase activity of Lon is also the most sensitive to peptide stimulation. Collectively, our kinetic as well as tryptic digestion data suggest that both nucleotide binding and hydrolysis contribute to the peptidase turnover of Lon. The kinetic data that were obtained were further put into the context of the structural organization of Lon protease by probing the conformational change in Lon bound to the different nucleotides. Both adenine-containing nucleotides and CTP protect a 67 kDa fragment of Lon from tryptic digestion. Since this 67 kDa fragment contains the ATP binding pocket (also known as the alpha/beta domain), the substrate sensor and discriminatory (SSD) domain (also known as the alpha-helical domain), and the protease domain of Lon, we propose that the binding of ATP induces a conformational change in Lon that facilitates the coupling of nucleotide hydrolysis with peptide substrate delivery to the peptidase active site.  相似文献   

10.
The effects of media concentrations of glucose andglutamine on the intracellular nucleotide pools andoxygen uptake rates of a murine antibody-secretinghybridoma cell line were investigated. Cells takenfrom mid-exponential phase of growth were incubated inmedium containing varying concentrations of glucose(0–25 mM) and glutamine (0–9 mM). The intracellularconcentrations of ATP, GTP, UTP and CTP, and theadenylate energy charge increased concomitantly withthe medium glucose concentration. The total adenylatenucleotide concentration did not change over a glucose concentration range of 1–25 mM but therelative levels of AMP, ADP and ATP changed as theenergy charge increased from 0.36 to 0.96. Themaximum oxygen uptake rate (OUR) was obtained in thepresence of 0.1–1 mM glucose. However at glucoseconcentrations >1 mM the OUR decreased suggestinga lower level of aerobic metabolism as a result of theCrabtree effect.A low concentration of glutamine (0.5 mM) caused asignificant increase (45–128%) in the ATP, GTP,CTP, UTP, UDP-GNac, and NAD pools and a doubling ofthe OUR compared to glutamine-free cultures. Theminimal concentration of glutamine also caused anincrease in the total adenylate pool indicating thatthe amino acid may stimulate thede novosynthesis of nucleotides. However, all nucleotidepools and the OUR remained unchanged within the rangeof 0.5–9 mM glutamine.Glucose was shown to be the major substrate forenergy metabolism. It was estimated that in thepresence of high concentrations of glucose (10–25 mM),glutamine provided the energy for the maintenance ofup to 28% of the intracellular ATP pool, whereas theremainder was provided by glucose metabolism.(Author for correspondence; E-mail:  相似文献   

11.
Wounding both cotyledons ofBidens pilosa (var.radiatus) induces the inhibition of hypocotyl growth. The wound signal is transmitted very rapidly from cotyledon to hypocotyl and can be visualized by the change in nucleotide pools. First we have shown that the irradiance of the plant can change the ATP level without plant wounding. Therefore, plants were harvested at the start of the light period. Under these conditions, we have determined in hypocotyl the levels of adenosine triphosphate (ATP), guanosine triphosphate (GTP) and non adenylic triphosphates (NTP), and adenylate energy charge (AEC) after wounding. We have observed a transient (2 min) increase in the ATP level followed by a decrease 5 to 30 min later. A similar result was obtained for the GTP level but with some delay. The GTP level increased in 5 min and then decreased after 60 min. For the NTP level the decrease is effective from 5 to 60 min after wounding. The calculation of AEC has shown that a very tight control in the level of ATP may be involved in response to wounding.  相似文献   

12.
We have used the photoaffinity analogs 8-azidoadenosine 5'-triphosphate (8-N3ATP) and 8-azidoguanosine 5'-triphosphate (8-N3GTP) to investigate the relationship between a viral induced protein (Mr = 120,000) in tobacco mosaic virus (TMV)-infected tobacco and the TMV-induced RNA-dependent RNA polymerase activity. When the radioactive analogs [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP were incubated with the tobacco tissue homogenate from TMV-infected plants, incorporation of label occurred into the viral induced protein in the presence of UV light. The incorporation was found to be totally dependent on UV-illumination and greatly enhanced by Mg2+. Saturation of photoincorporated label indicates an apparent Kd of 16 microM (+/- 3 microM) and 12 microM (+/- 3 microM) for 8-N3ATP and 8-N3GTP, respectively. Protection against photolabeling by [gamma-32P]8-N3ATP and [gamma-32P]8-N3GTP with various nonradioactive nucleotides and nucleosides suggests that the photolabeled site is protected best by nucleoside triphosphates. At 200 microM both deoxyribonucleoside triphosphates and ribonucleoside triphosphates were very effective at protecting the site from photolabeling. These data suggest that the photolabeled protein may be part of an RNA-dependent RNA polymerase. The utility of nucleotide photoaffinity analogs as a method to study viral induced nucleotide-binding proteins is discussed.  相似文献   

13.
Nucleoside diphosphate kinase (NDPK) has many roles and is present in different locations in the cell. Membrane-bound NDPK is present in epithelial fractions enriched for the apical membrane. Here, we show in human, mouse and sheep airway membranes, that the phosphorylation state of membrane-bound NDPK on histidine and serine residues differs dependent on many regulatory factors. GTP (but not ATP) promotes serine phosphorylation (pSer) of NDPK. Further we find that rising [AMP] promotes pSer (only with GTP) but inhibits histidine phosphorylation (pHis) of NDPK from both donors. We find that NDPK co-immunoprecipitates reciprocally with AMP-activated kinase and that these two proteins can co-localise in human airways. AMP concentrations rise rapidly when ATP is depleted or during hypoxia. We find that, in human airway cells exposed to hypoxia (3% oxygen), membrane-bound NDPK is inhibited. Although histidine phosphorylation should in principle be independent of the nucleotide triphosphates used, we speculate that this membrane pool of NDPK may be able to switch function dependent on nucleotide species.  相似文献   

14.
Guanosine 5'-triphosphate (GTP) plays a significant role in the bioenergetics, metabolism, and signaling of cells; consequently, any modifications to the structure of the molecule can have profound effects on a cell's survival and function. Previous studies in our laboratory demonstrated that like proteins, purines, and pyrimidines can nonenzymatically react with sugars to generate advanced glycation endproducts (AGEs) and that these AGEs can form in vitro under physiological conditions. The objective of this investigation was twofold. First, it was to evaluate the susceptibility of ATP, GTP, CTP, and TTP to nonenzymatic modification by D-glucose and DL-glyceraldehyde, and second to assess the effect of various factors such as temperature, pH and incubation time, and sugar concentration on the rate and extent of nucleotide triphosphate AGE formation. Of the four nucleotide triphosphates that were studied, only GTP was significantly reactive forming a heterogeneous group of compounds with DL-glyceraldehyde. D-Glucose exhibited no significant reactivity with any of the nucleotide triphosphates, a finding that was supported by UV and fluorescence spectroscopy. Capillary electrophoresis, high-performance liquid chromatography and mass spectrometry allowed for a thorough analysis of the glycated GTP products and demonstrated that the modification of GTP by dl-glyceraldehyde occurred via the classical Amadori pathway.  相似文献   

15.
Flaviviral RNA-dependent RNA polymerases (RdRps) initiate replication of the single-stranded RNA genome in the absence of a primer. The template sequence 5′-CU-3′ at the 3′-end of the flaviviral genome is highly conserved. Surprisingly, flaviviral RdRps require high concentrations of the second incoming nucleotide GTP to catalyze de novo template-dependent RNA synthesis. We show that GTP stimulates de novo RNA synthesis by RdRp from Japanese encephalitis virus (jRdRp) also. Crystal structures of jRdRp complexed with GTP and ATP provide a basis for specific recognition of GTP. Comparison of the jRdRpGTP structure with other viral RdRp-GTP structures shows that GTP binds jRdRp in a novel conformation. Apo-jRdRp structure suggests that the conserved motif F of jRdRp occupies multiple conformations in absence of GTP. Motif F becomes ordered on GTP binding and occludes the nucleotide triphosphate entry tunnel. Mutational analysis of key residues that interact with GTP evinces that the jRdRpGTP structure represents a novel pre-initiation state. Also, binding studies show that GTP binding reduces affinity of RdRp for RNA, but the presence of the catalytic Mn2+ ion abolishes this inhibition. Collectively, these observations suggest that the observed pre-initiation state may serve as a checkpoint to prevent erroneous template-independent RNA synthesis by jRdRp during initiation.  相似文献   

16.
Phosphate concentrations in the range 0.1 to 2.0 millimolar induced the formation of extracellular amorphous calcium-phosphates in the cell wall of the marine macro algae Ulva lactuca when they were cultivated in light in seawater at 20°C. A broad resonance representing these compounds as well as resonances for extracellular orthophosphate and polyphosphates could be followed by 31P-nuclear magnetic resonance spectroscopy. The presence of the calcium-phosphate made the cells brittle and it inhibited the growth of the macro algae and caused mortality within 1 week. The formation of the calcium-phosphates was influenced by the external phosphate concentration, the extracellular pH and the nature and concentration of the external nitrogen source. Furthermore, no formation of these compounds was observed when Ulva lactuca was cultivated in the dark, at low temperatures (5°C) or in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea. The complex could be removed through washes with ethylenediaminetetraacetate; this treatment did not alter the intracellular pH or the orthophosphate and polyphosphate pools and it restored growth.  相似文献   

17.
The bifunctional aminoglycoside-modifying enzyme aminoglycoside acetyltransferase(6′)-Ie/aminoglycoside phosphotransferase(2″)-Ia, or AAC(6′)-Ie/APH(2″)-Ia, is the major source of aminoglycoside resistance in Gram-positive bacterial pathogens. In previous studies, using ATP as the cosubstrate, it was reported that the APH(2″)-Ia domain of this enzyme is unique among aminoglycoside phosphotransferases, having the ability to inactivate an unusually broad spectrum of aminoglycosides, including 4,6- and 4,5-disubstituted and atypical. We recently demonstrated that GTP, and not ATP, is the preferred cosubstrate of this enzyme. We now show, using competition assays between ATP and GTP, that GTP is the exclusive phosphate donor at intracellular nucleotide levels. In light of these findings, we reevaluated the substrate profile of the phosphotransferase domain of this clinically important enzyme. Steady-state kinetic characterization using the phosphate donor GTP demonstrates that AAC(6′)-Ie/APH(2″)-Ia phosphorylates 4,6-disubstituted aminoglycosides with high efficiency (kcat/Km = 105-107 m−1 s−1). Despite this proficiency, no resistance is conferred to some of these antibiotics by the enzyme in vivo. We now show that phosphorylation of 4,5-disubstituted and atypical aminoglycosides are negligible and thus these antibiotics are not substrates. Instead, these aminoglycosides tend to stimulate an intrinsic GTPase activity of the enzyme. Taken together, our data show that the bifunctional enzyme efficiently phosphorylates only 4,6-disubstituted antibiotics; however, phosphorylation does not necessarily result in bacterial resistance. Hence, the APH(2″)-Ia domain of the bifunctional AAC(6′)-Ie/APH(2″)-Ia enzyme is a bona fide GTP-dependent kinase with a narrow substrate profile, including only 4,6-disubstituted aminoglycosides.  相似文献   

18.
Diacylglycerol:ATP kinase(EC 2.3.1.-) was highly purified (more than 2000-fold) from rat liver cytosol. The specific activity of the obtained enzyme was about 1.5 μmol phosphatidate formed/mg of protein/min. The purification procedures included ammonium sulfate fractionation, DEAE-cellulose chromatography, gel filtration on Sephadex G-200, and finally affinity chromatography on ATP-agarose. The activities of diacylglycerol:GTP kinase and monoacylglycerol:ATP kinase were copurified throughout the procedures, forming a single peak together with diacylglycerol: ATP kinase. Furthermore, these kinase activities showed a single peak when the highly purified enzyme was analyzed by a sucrose density gradient centrifugation and polyacrylamide gel electrophoresis. The three kinase activities are, therefore, most likely catalyzed by a single enzyme. The kinase showed an apparent molecular weight of 121,000 on gel filtration and sedimented at 5.1 S in a sucrose gradient centrifugation. The apparent Km values were 170 μm for ATP, 540 μm for GTP, and 3.0 μm for diacylglycerol. A number of nucleoside triphosphates and diphosphates competitively inhibited the kinase, in particular the activity utilizing GTP. Among the nucleotides tested, ADP was the most potent inhibitor (the apparent Ki:50 μm for diacylglycerol:ATP kinase and 42 μm for diacylglycerol:GTP kinase). The kinase required Mg2+ and deoxycholate for its activity, and the optimal pH was 8.0–8.5. No dependence on added phospholipids was observed.  相似文献   

19.
Purified plasma membrane vesicles isolated from multidrug-resistant human KB-V1 cells accumulate [3H]vinblastine in an energy-dependent manner. The accumulation of [3H]vinblastine in the presence of ATP is a saturable process. ATP can be replaced by other purine nucleotide triphosphates, of which GTP is the most efficient.  相似文献   

20.
Eleocytes (a type of coelomic cell) of the polychaete Nereis virens can store large amounts of adenine nucleotides at certain times. Since eleocytes have specific functions related to gametogenesis, we tested whether the presence of these large nucleotide stores in eleocytes is specific to gender or related to specific events during gametogenesis. Nucleotide pools in eleocytes isolated at different stages of sexual maturation from N. virens were analysed using high-performance liquid chromatography. Eleocytes from immature and male animals had extremely high concentrations of both AMP and ADP (each > 10 μmol/ml of packed cell volume). In eleocytes from male animals, the high nucleotide stores were maintained throughout the maturation phase and decreased at a late stage, while in female animals the nucleotides were degraded at an early stage of maturation. In male eleocytes, the decrease in the adenine nucleotide pool may be the result of its conversion to inosine which is then released by the eleocytes and reutilized by male germ cells for nucleic acid biosynthesis, as has been suggested previously. Our study shows that the time of degradation of the adenine nucleotide pool coincides with the period of spermatogonia proliferation which involves intense nucleic acid synthesis. ATP levels (0.4–1.5 μmol/ml packed cell volume) and the guanine nucleotide pool (GTP+GDP+GMP; 0.08–0.18 μmol/ml packed cell volume) were similar in both sexes, did not change during germ cell development and were decreased only in eleocytes from prespawning females. The GTP/GDP ratios were initially higher (up to 14) in eleocytes from females compared to ratios in eleocytes from immature (4–9) and male animals (up to 8), and decreased during the maturation phase of the animals. GTP levels were correlated with those of ATP; this correlation was much closer in eleocytes from females than from males. The results further support the hypothesis that the adenine nucleotide stores in the eleocytes are maintained as a supply of purine precursors for the growing germ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号